अभिकलनात्‍मक गणनीय सेट: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Mathematical logic concept}}
{{Short description|Mathematical logic concept}}संगणनीयता सिद्धांत में, [[प्राकृतिक संख्या]]ओं के एक समुच्चय 'S' को 'कम्प्यूटेशनल इन्युमरेबल(अभिकलनात्‍मक गणनीय) (c.e)', 'रिकर्सिवली इन्युमरेबल(पुनरावर्ती रूप से गणनीय) (r.e..)', 'सेमीडेसिडेबल'(अर्द्धनिर्णय योग्य), 'आंशिक रूप से निर्णायक', 'लिस्टेबल', 'सूची योग्य, सिद्ध या ट्यूरिंग-पहचानने योग्य' कहा जाता है। यदि:
{{Redirect|गणना योग्य समुच्चय|समुच्चय-सैद्धांतिक अवधारणा|गणनीय समुच्चय}}


संगणनीयता सिद्धांत में, [[प्राकृतिक संख्या]]ओं के एक समुच्चय 'एस' को 'कम्प्यूटेशनल इन्युमरेबल(अभिकलनात्‍मक गणनीय) (सी.ई.)', 'रिकर्सिवली इन्युमरेबल(पुनरावर्ती रूप से गणनीय) (आर.ई.)', 'सेमीडेसिडेबल'(अर्द्धनिर्णय योग्य), 'आंशिक रूप से निर्णायक', 'लिस्टेबल', 'सूची योग्य, सिद्ध या ट्यूरिंग-पहचानने योग्य' कहा जाता है। यदि:
* [[कलन विधि]] है जैसे कि इनपुट नंबरों का समुच्चय जिसके लिए कलन विधि रुकता है, बिल्कुल 'S' है।
 
* एक [[कलन विधि]] है जैसे कि इनपुट नंबरों का समुच्चय जिसके लिए कलन विधि रुकता है, बिल्कुल 'एस' है।


या, समकक्ष,
या, समकक्ष,


* 'एस' के सदस्यों के लिए एक गणना कलन विधि है। इसका मतलब है कि इसका निर्गम 'एस' के सभी सदस्यों की एक सूची है: 'एस'<sub>1</sub>, 'एस'<sub>2</sub>, 'एस'<sub>3</sub>, ... . यदि 'एस' अनंत है, तो यह कलन विधि हमेशा के लिए चलेगा।
* 'S' के सदस्यों के लिए एक गणना कलन विधि है। इसका मतलब है कि इसका निर्गम 'S' के सभी सदस्यों की एक सूची है: ''S'':  ''s''<sub>1</sub>, ''s''<sub>2</sub>, ''s''<sub>3</sub>,, ... . यदि 'S' अनंत है, तो यह कलन विधि सदैव के लिए चलेगा है।


पहली शर्त बताती है कि अर्धनिर्णायक शब्द का प्रयोग कभी-कभी क्यों किया जाता है। अधिक सटीक रूप से, यदि कोई संख्या समुच्चय में है, तो कलन विधि चलाकर यह तय किया जा सकता है, लेकिन यदि संख्या समुच्चय में नहीं है, तो कलन विधि हमेशा के लिए चलता है, और कोई जानकारी वापस नहीं आती है। एक समुच्चय जो पूरी तरह से निर्णायक है, एक [[गणना योग्य सेट|गणना योग्य समुच्चय]] है। दूसरी स्थिति बताती है कि गणना योग्य का उपयोग क्यों किया जाता है। संक्षिप्तीकरण 'सी.ई.' और 'आर..' पूर्ण वाक्यांश के अतिरिक्त अधिकांशत: छपाई में भी उपयोग किया जाता है।
पहली शर्त बताती है कि अर्धनिर्णायक शब्द का प्रयोग कभी-कभी क्यों किया जाता है। अधिक सटीक रूप से, यदि कोई संख्या समुच्चय में है, तो कलन विधि चलाकर यह तय किया जा सकता है, लेकिन यदि संख्या समुच्चय में नहीं है, तो कलन विधि सदैव के लिए चलता है, और कोई जानकारी वापस नहीं आती है। एक समुच्चय जो पूरी तरह से निर्णायक है, एक [[गणना योग्य सेट|गणना योग्य समुच्चय]] है। दूसरी स्थिति बताती है कि गणना योग्य का उपयोग क्यों किया जाता है। संक्षिप्तीकरण 'c.e' और 'r.e..' पूर्ण वाक्यांश के अतिरिक्त अधिकांशत: छपाई में भी उपयोग किया जाता है।


[[Index.php?title=अभिकलनात्‍मक जटिलता सिद्धांत|अभिकलनात्‍मक जटिलता सिद्धांत]] में, [[जटिलता वर्ग]] जिसमें सभी गणनात्मक गणना योग्य समुच्चय [[आरई (जटिलता)]] हैं। पुनरावर्तन सिद्धांत में, सी.ई. का जालक (क्रम) समावेशन के अनुसार समुच्चय को दर्शाया गया है <math>\mathcal{E}</math>.
[[Index.php?title=अभिकलनात्‍मक जटिलता सिद्धांत|अभिकलनात्‍मक जटिलता सिद्धांत]] में, [[जटिलता वर्ग]] जिसमें सभी गणनात्मक गणना योग्य समुच्चय [[आरई (जटिलता)|RE (जटिलता)]] हैं। पुनरावर्तन सिद्धांत में, c.e का जालक (क्रम) समावेशन के अनुसार समुच्चय को दर्शाया गया है <math>\mathcal{E}</math>.


== औपचारिक परिभाषा ==
== औपचारिक परिभाषा ==


प्राकृतिक संख्याओं के एक समुच्चय 'एस' को 'अभिकलनात्‍मक गणनीय' कहा जाता है, यदि कोई आंशिक संगणनीय फलन जिसका डोमेन बिल्कुल 'एस' है, जिसका अर्थ है कि  फलन को परिभाषित किया गया है और केवल यदि इसका निविष्ट 'एस' का सदस्य है।
प्राकृतिक संख्याओं के एक समुच्चय 'S' को 'अभिकलनात्‍मक गणनीय' कहा जाता है, यदि कोई आंशिक संगणनीय फलन जिसका प्रभावक्षेत्र बिल्कुल 'S' है, जिसका अर्थ है कि  फलन को परिभाषित किया गया है और केवल यदि इसका निविष्ट 'S' का सदस्य है।


== समतुल्य सूत्रीकरण ==
== समतुल्य सूत्रीकरण ==
निम्नलिखित प्राकृतिक संख्याओं के समुच्चय 'एस' के समतुल्य गुण हैं:
निम्नलिखित प्राकृतिक संख्याओं के समुच्चय 'S' के समतुल्य गुण हैं:


; अर्धनिर्णायकता <nowiki>:</nowiki>
; अर्धनिर्णायकता <nowiki>:</nowiki>
: * समुच्चय 'एस' संगणनीय रूप से गणना योग्य है। अर्थात्, 'एस' एक आंशिक संगणनीय फलन का प्रांत (सह-श्रेणी) है।
: समुच्चय 'S' संगणनीय रूप से गणना योग्य है। अर्थात्, 'S' एक आंशिक संगणनीय फलन का प्रांत (सह-श्रेणी) है।
: * समुच्चय S है <math>\Sigma^0_1</math> ([[अंकगणितीय पदानुक्रम]] का जिक्र करते हुए)।<ref>{{cite book |last1=Downey |first1=Rodney G. |last2=Hirschfeldt |first2=Denis R. |title=Algorithmic Randomness and Complexity |date=29 October 2010 |publisher=Springer Science & Business Media |isbn=978-0-387-68441-3 |page=23 |url=https://www.google.com/books/edition/Algorithmic_Randomness_and_Complexity/FwIKhn4RYzYC?hl=en&gbpv=1&pg=PA23 |language=en}}</ref>
: समुच्चय S है <math>\Sigma^0_1</math> ([[अंकगणितीय पदानुक्रम]] का जिक्र करते हुए)।<ref>{{cite book |last1=Downey |first1=Rodney G. |last2=Hirschfeldt |first2=Denis R. |title=Algorithmic Randomness and Complexity |date=29 October 2010 |publisher=Springer Science & Business Media |isbn=978-0-387-68441-3 |page=23 |url=https://www.google.com/books/edition/Algorithmic_Randomness_and_Complexity/FwIKhn4RYzYC?hl=en&gbpv=1&pg=PA23 |language=en}}</ref>
: * एक आंशिक संगणनीय  फलन f है जैसे कि: <math display="block"> f(x) =
: एक आंशिक संगणनीय  फलन f है जैसे कि: <math display="block"> f(x) =
\begin{cases}  
\begin{cases}  
1 &\mbox{if}\ x \in S \\
1 &\mbox{if}\ x \in S \\
Line 31: Line 28:
</math>
</math>
'''गणनीयता <nowiki>:</nowiki>'''
'''गणनीयता <nowiki>:</nowiki>'''
: * समुच्चय 'एस' आंशिक गणना योग्य फलन की सीमा है।
:* समुच्चय 'S' आंशिक गणना योग्य फलन की सीमा है।
: * समुच्चय 'एस' कुल गणना योग्य फलन या खाली की सीमा है। यदि 'एस' अनंत है, तो फलन [[Index.php?title=अंतःक्षेपक|अंतःक्षेपक]] के रूप में चुना जा सकता है।
:* समुच्चय 'S' कुल गणना योग्य फलन या खाली की सीमा है। यदि 'S' अनंत है, तो फलन [[Index.php?title=अंतःक्षेपक|अंतःक्षेपक]] के रूप में चुना जा सकता है।
: * समुच्चय 'एस' एक आदिम पुनरावर्ती फलन या खाली की सीमा है। भले ही 'एस' अनंत है, इस स्थितियों में मूल्यों की पुनरावृत्ति आवश्यक हो सकती है।
:* समुच्चय 'S' एक आदिम पुनरावर्ती फलन या खाली की सीमा है। भले ही 'S' अनंत है, इस स्थितियों में मूल्यों की पुनरावृत्ति आवश्यक हो सकती है।
'''डायोफैंटाइन <nowiki>:</nowiki>'''
'''डायोफैंटाइन <nowiki>:</nowiki>'''
: * पूर्णांक गुणांक और चर x, a, b, c, d, e, f, g, h, i के साथ एक बहुपद p है, जो प्राकृतिक संख्याओं से अधिक है <math display="block">x \in S \Leftrightarrow \exists a,b,c,d,e,f,g,h,i \ ( p(x,a,b,c,d,e,f,g,h,i) = 0).</math> (इस परिभाषा में बाध्य चर की संख्या अब तक सबसे अच्छी तरह से ज्ञात है; हो सकता है कि सभी डायोफैंटाइन समुच्चयों को परिभाषित करने के लिए कम संख्या का उपयोग किया जा सके।)
:* पूर्णांक गुणांक और चर x, a, b, c, d, e, f, g, h, i के साथ एक बहुपद p है, जो प्राकृतिक संख्याओं से अधिक है <math display="block">x \in S \Leftrightarrow \exists a,b,c,d,e,f,g,h,i \ ( p(x,a,b,c,d,e,f,g,h,i) = 0).</math> (इस परिभाषा में बाध्य चर की संख्या अब तक सबसे अच्छी तरह से ज्ञात है; हो सकता है कि सभी डायोफैंटाइन समुच्चयों को परिभाषित करने के लिए कम संख्या का उपयोग किया जा सके।)
: * पूर्णांक से पूर्णांक तक एक बहुपद है जैसे कि समुच्चय 'एस' में इसकी सीमा में गैर-ऋणात्मक संख्याएँ होती हैं।
:* पूर्णांक से पूर्णांक तक एक बहुपद है जैसे कि समुच्चय 'S' में इसकी सीमा में गैर-ऋणात्मक संख्याएँ होती हैं।


अंतर्ग्रथन (कंप्यूटर विज्ञान) की तकनीक द्वारा अर्ध-निर्णायकता और गणनीयता की समानता प्राप्त की जा सकती है।
अंतर्ग्रथन (कंप्यूटर विज्ञान) की तकनीक द्वारा अर्ध-निर्णायकता और गणनीयता की समानता प्राप्त की जा सकती है।
Line 49: Line 46:
== उदाहरण ==
== उदाहरण ==
* प्रत्येक संगणनीय समुच्चय संगणनीय रूप से गणना योग्य है, लेकिन यह सच नहीं है कि प्रत्येक गणना योग्य समुच्चय गणना योग्य है। संगणनीय समुच्चयों के लिए, कलन विधि को यह भी बताना चाहिए कि क्या कोई इनपुट( निविष्टि) समुच्चय में नहीं है - यह संगणनीय रूप से गणना योग्य समुच्चयों के लिए आवश्यक नहीं है।
* प्रत्येक संगणनीय समुच्चय संगणनीय रूप से गणना योग्य है, लेकिन यह सच नहीं है कि प्रत्येक गणना योग्य समुच्चय गणना योग्य है। संगणनीय समुच्चयों के लिए, कलन विधि को यह भी बताना चाहिए कि क्या कोई इनपुट( निविष्टि) समुच्चय में नहीं है - यह संगणनीय रूप से गणना योग्य समुच्चयों के लिए आवश्यक नहीं है।
* एक पुनरावर्ती गणना योग्य भाषा एक [[औपचारिक भाषा]] का एक संगणनीय रूप से गणना योग्य उपसमुच्चय है।
* पुनरावर्ती गणना योग्य भाषा एक [[औपचारिक भाषा]] का एक संगणनीय रूप से गणना योग्य उपसमुच्चय है।
* प्रभावी रूप से प्रस्तुत स्वयंसिद्ध प्रणाली में सभी सिद्ध वाक्यों का समुच्चय एक संगणनीय रूप से गणना योग्य समुच्चय है।
* प्रभावी रूप से प्रस्तुत स्वयंसिद्ध प्रणाली में सभी सिद्ध वाक्यों का समुच्चय एक संगणनीय रूप से गणना योग्य समुच्चय है।
* मटियासेविच के प्रमेय में कहा गया है कि प्रत्येक संगणनीय रूप से गणना योग्य समुच्चय एक [[डायोफैंटाइन सेट|डायोफैंटाइन समुच्चय]] है (विपरीत तुच्छ रूप से सत्य है)।
* मटियासेविच के प्रमेय में कहा गया है कि प्रत्येक संगणनीय रूप से गणना योग्य समुच्चय एक [[डायोफैंटाइन सेट|डायोफैंटाइन समुच्चय]] है (विपरीत तुच्छ रूप से सत्य है)।
Line 61: Line 58:
== गुण ==
== गुण ==


यदि 'ए' और 'बी' संगणनीय रूप से गणना योग्य समुच्चय हैं तो 'ए' 'बी', ए ∪ 'बी' और 'ए' × 'बी' (कैंटर पेयरिंग  फलन के साथ एकल प्राकृतिक संख्या में प्रतिचित्रित की गई प्राकृतिक संख्याओं की क्रमबद्ध जोड़ी के साथ) संगणनीय रूप से गणना योग्य समुच्चय हैं। आंशिक संगणनीय  फलन के अनुसार एक संगणनीय रूप से गणना योग्य समुच्चय का पूर्वाभास एक संगणनीय रूप से गणना योग्य समुच्चय है।
यदि A और B संगणनीय रूप से गणना योग्य समुच्चय हैं तो A B, ए ∪ B और A × B (कैंटर पेयरिंग  फलन के साथ एकल प्राकृतिक संख्या में प्रतिचित्रित की गई प्राकृतिक संख्याओं की क्रमबद्ध जोड़ी के साथ) संगणनीय रूप से गणना योग्य समुच्चय हैं। आंशिक संगणनीय  फलन के अनुसार एक संगणनीय रूप से गणना योग्य समुच्चय का पूर्वाभास एक संगणनीय रूप से गणना योग्य समुच्चय है।


एक समुच्चय <math>T</math> सह-अभिकलनात्‍मक-गणनीय या सह-सी.ई. कहा जाता है। यदि इसका [[पूरक (सेट सिद्धांत)|पूरक (समुच्चय सिद्धांत)]] <math>\mathbb{N} \setminus T</math> गणना योग्य है। समतुल्य रूप से, एक समुच्चय सह-आर है। यदि और केवल यदि यह स्तर पर है <math>\Pi^0_1</math> अंकगणितीय पदानुक्रम का। सह-अभिकलनात्‍मक-गणनीय समुच्चय की जटिलता वर्ग को सह-आर ई निरूपित किया जाता है।
समुच्चय <math>T</math> सह-अभिकलनात्‍मक-गणनीय या सह-c.e कहा जाता है। यदि इसका [[पूरक (सेट सिद्धांत)|पूरक (समुच्चय सिद्धांत)]] <math>\mathbb{N} \setminus T</math> गणना योग्य है। समतुल्य रूप से, एक समुच्चय सह-आर है। यदि और केवल यदि यह स्तर पर है <math>\Pi^0_1</math> अंकगणितीय पदानुक्रम का। सह-अभिकलनात्‍मक-गणनीय समुच्चय की जटिलता वर्ग को सह-आर ई निरूपित किया जाता है।


एक समुच्चय 'ए' संगणनीय समुच्चय है यदि और केवल यदि 'ए' और 'ए' का पूरक दोनों गणना योग्य हैं।
समुच्चय A संगणनीय समुच्चय है यदि और केवल यदि A और A का पूरक दोनों गणना योग्य हैं।


अभिकलनात्‍मक गणनीय योग्य समुच्चय के कुछ जोड़े [[प्रभावी रूप से वियोज्य]] हैं और कुछ नहीं हैं।
अभिकलनात्‍मक गणनीय योग्य समुच्चय के कुछ जोड़े [[प्रभावी रूप से वियोज्य]] हैं और कुछ नहीं हैं।


== टिप्पणियाँ ==
== टिप्पणियाँ ==
चर्च-ट्यूरिंग थीसिस(अभिधारणा) के अनुसार, कोई भी प्रभावी रूप से गणना करने योग्य फलन एक ट्यूरिंग मशीन द्वारा गणना योग्य है, और इस प्रकार एक समुच्चय 'एस' संगणनीय रूप से गणना योग्य है यदि और केवल  कुछ कलन विधि है जो 'एस' की गणना उत्पन्न करता है। इसे औपचारिक परिभाषा के रूप में नहीं लिया जा सकता है। क्योंकि चर्च-ट्यूरिंग अभिधारणा एक औपचारिक स्वयंसिद्ध के अतिरिक्त एक अनौपचारिक अनुमान है।
चर्च-ट्यूरिंग थीसिस(अभिधारणा) के अनुसार, कोई भी प्रभावी रूप से गणना करने योग्य फलन एक ट्यूरिंग मशीन द्वारा गणना योग्य है, और इस प्रकार एक समुच्चय 'S' संगणनीय रूप से गणना योग्य है यदि और केवल  कुछ कलन विधि है जो 'S' की गणना उत्पन्न करता है। इसे औपचारिक परिभाषा के रूप में नहीं लिया जा सकता है। क्योंकि चर्च-ट्यूरिंग अभिधारणा एक औपचारिक स्वयंसिद्ध के अतिरिक्त एक अनौपचारिक अनुमान है।


कुल गणना योग्य फलन की सीमा के अतिरिक्त आंशिक फलन के डोमेन के रूप में एक गणना योग्य समुच्चय की परिभाषा, समकालीन ग्रंथों में सामान्य है। यह विकल्प इस तथ्य से प्रेरित है कि सामान्यीकृत पुनरावर्तन सिद्धांतों में, जैसे कि अल्फा पुनरावर्तन सिद्धांत। α-पुनरावृत्ति सिद्धांत, डोमेन से संबंधित परिभाषा अधिक प्राकृतिक पाई गई है। अन्य पाठ गणनाओं के संदर्भ में परिभाषा का उपयोग करते हैं, जो संगणनीय रूप से गणना योग्य समुच्चयों के बराबर है।
कुल गणना योग्य फलन की सीमा के अतिरिक्त आंशिक फलन के प्रभावक्षेत्र के रूप में एक गणना योग्य समुच्चय की परिभाषा, समकालीन ग्रंथों में सामान्य है। यह विकल्प इस तथ्य से प्रेरित है कि सामान्यीकृत पुनरावर्तन सिद्धांतों में, जैसे कि अल्फा पुनरावर्तन सिद्धांत। α-पुनरावृत्ति सिद्धांत, प्रभावक्षेत्र से संबंधित परिभाषा अधिक प्राकृतिक पाई गई है। अन्य पाठ गणनाओं के संदर्भ में परिभाषा का उपयोग करते हैं, जो संगणनीय रूप से गणना योग्य समुच्चयों के बराबर है।


== यह भी देखें ==
== यह भी देखें ==
* आरई (जटिलता)
* RE (जटिलता)
* पुनरावर्ती गणना योग्य भाषा
* पुनरावर्ती गणना योग्य भाषा
* अंकगणितीय पदानुक्रम
* अंकगणितीय पदानुक्रम
Line 84: Line 81:
* Soare, R. Recursively enumerable sets and degrees. ''Perspectives in Mathematical Logic.'' [[Springer-Verlag]], Berlin, 1987. {{isbn|3-540-15299-7}}.
* Soare, R. Recursively enumerable sets and degrees. ''Perspectives in Mathematical Logic.'' [[Springer-Verlag]], Berlin, 1987. {{isbn|3-540-15299-7}}.
* Soare, Robert I. Recursively enumerable sets and degrees. ''Bull. Amer. Math. Soc.'' 84 (1978), no. 6, 1149–1181.
* Soare, Robert I. Recursively enumerable sets and degrees. ''Bull. Amer. Math. Soc.'' 84 (1978), no. 6, 1149–1181.
{{Mathematical logic}}
[[Category: संगणनीयता सिद्धांत]] [[Category: संगणना का सिद्धांत]]  
[[Category: संगणनीयता सिद्धांत]] [[Category: संगणना का सिद्धांत]]  



Revision as of 12:17, 9 February 2023

संगणनीयता सिद्धांत में, प्राकृतिक संख्याओं के एक समुच्चय 'S' को 'कम्प्यूटेशनल इन्युमरेबल(अभिकलनात्‍मक गणनीय) (c.e)', 'रिकर्सिवली इन्युमरेबल(पुनरावर्ती रूप से गणनीय) (r.e..)', 'सेमीडेसिडेबल'(अर्द्धनिर्णय योग्य), 'आंशिक रूप से निर्णायक', 'लिस्टेबल', 'सूची योग्य, सिद्ध या ट्यूरिंग-पहचानने योग्य' कहा जाता है। यदि:

  • कलन विधि है जैसे कि इनपुट नंबरों का समुच्चय जिसके लिए कलन विधि रुकता है, बिल्कुल 'S' है।

या, समकक्ष,

  • 'S' के सदस्यों के लिए एक गणना कलन विधि है। इसका मतलब है कि इसका निर्गम 'S' के सभी सदस्यों की एक सूची है: S: s1, s2, s3,, ... . यदि 'S' अनंत है, तो यह कलन विधि सदैव के लिए चलेगा है।

पहली शर्त बताती है कि अर्धनिर्णायक शब्द का प्रयोग कभी-कभी क्यों किया जाता है। अधिक सटीक रूप से, यदि कोई संख्या समुच्चय में है, तो कलन विधि चलाकर यह तय किया जा सकता है, लेकिन यदि संख्या समुच्चय में नहीं है, तो कलन विधि सदैव के लिए चलता है, और कोई जानकारी वापस नहीं आती है। एक समुच्चय जो पूरी तरह से निर्णायक है, एक गणना योग्य समुच्चय है। दूसरी स्थिति बताती है कि गणना योग्य का उपयोग क्यों किया जाता है। संक्षिप्तीकरण 'c.e' और 'r.e..' पूर्ण वाक्यांश के अतिरिक्त अधिकांशत: छपाई में भी उपयोग किया जाता है।

अभिकलनात्‍मक जटिलता सिद्धांत में, जटिलता वर्ग जिसमें सभी गणनात्मक गणना योग्य समुच्चय RE (जटिलता) हैं। पुनरावर्तन सिद्धांत में, c.e का जालक (क्रम) समावेशन के अनुसार समुच्चय को दर्शाया गया है .

औपचारिक परिभाषा

प्राकृतिक संख्याओं के एक समुच्चय 'S' को 'अभिकलनात्‍मक गणनीय' कहा जाता है, यदि कोई आंशिक संगणनीय फलन जिसका प्रभावक्षेत्र बिल्कुल 'S' है, जिसका अर्थ है कि फलन को परिभाषित किया गया है और केवल यदि इसका निविष्ट 'S' का सदस्य है।

समतुल्य सूत्रीकरण

निम्नलिखित प्राकृतिक संख्याओं के समुच्चय 'S' के समतुल्य गुण हैं:

अर्धनिर्णायकता :
समुच्चय 'S' संगणनीय रूप से गणना योग्य है। अर्थात्, 'S' एक आंशिक संगणनीय फलन का प्रांत (सह-श्रेणी) है।
समुच्चय S है (अंकगणितीय पदानुक्रम का जिक्र करते हुए)।[1]
एक आंशिक संगणनीय फलन f है जैसे कि:

गणनीयता :

  • समुच्चय 'S' आंशिक गणना योग्य फलन की सीमा है।
  • समुच्चय 'S' कुल गणना योग्य फलन या खाली की सीमा है। यदि 'S' अनंत है, तो फलन अंतःक्षेपक के रूप में चुना जा सकता है।
  • समुच्चय 'S' एक आदिम पुनरावर्ती फलन या खाली की सीमा है। भले ही 'S' अनंत है, इस स्थितियों में मूल्यों की पुनरावृत्ति आवश्यक हो सकती है।

डायोफैंटाइन :

  • पूर्णांक गुणांक और चर x, a, b, c, d, e, f, g, h, i के साथ एक बहुपद p है, जो प्राकृतिक संख्याओं से अधिक है
    (इस परिभाषा में बाध्य चर की संख्या अब तक सबसे अच्छी तरह से ज्ञात है; हो सकता है कि सभी डायोफैंटाइन समुच्चयों को परिभाषित करने के लिए कम संख्या का उपयोग किया जा सके।)
  • पूर्णांक से पूर्णांक तक एक बहुपद है जैसे कि समुच्चय 'S' में इसकी सीमा में गैर-ऋणात्मक संख्याएँ होती हैं।

अंतर्ग्रथन (कंप्यूटर विज्ञान) की तकनीक द्वारा अर्ध-निर्णायकता और गणनीयता की समानता प्राप्त की जा सकती है।

अभिकलनात्मक रूप से गणना योग्य समुच्चय के डायोफैंटाइन लक्षण वर्णन, जबकि पहली परिभाषाओं के रूप में सीधे या सहज नहीं थे, हिल्बर्ट की दसवीं समस्या के नकारात्मक समाधान के हिस्से के रूप में यूरी मटियासेविच द्वारा पाए गए थे। हिल्बर्ट की दसवीं समस्या। डायोफैंटाइन प्रत्यावर्तन सिद्धांत से पहले का समुच्चय करता है और इसलिए ऐतिहासिक रूप से इन समुच्चयों का वर्णन करने का पहला तरीका है (चूंकि यह तुल्यता केवल तीन दशकों से अधिक गणनात्मक रूप से गणना योग्य समुच्चयों के प्रारंभ के बाद टिप्पणी की गई थी)।

एक निश्चित इनपुट पर रुकने वाली सभी ट्यूरिंग मशीनों के सेट की एक संगणनीय गणना: दिखाए गए विकर्णकरण शेड्यूलिंग का उपयोग करके सभी ट्यूरिंग मशीनों (ऊर्ध्वाधर अक्ष पर गणना) चरण दर चरण (क्षैतिज अक्ष) का अनुकरण करें। यदि कोई मशीन समाप्त हो जाती है, तो उसका नंबर प्रिंट करें। इस तरह, प्रत्येक समाप्ति मशीन की संख्या अंततः मुद्रित होती है। उदाहरण में, एल्गोरिथ्म "9, 13, 4, 15, 12, 18, 6, 2, 8, 0, ..." प्रिंट करता है।


उदाहरण

  • प्रत्येक संगणनीय समुच्चय संगणनीय रूप से गणना योग्य है, लेकिन यह सच नहीं है कि प्रत्येक गणना योग्य समुच्चय गणना योग्य है। संगणनीय समुच्चयों के लिए, कलन विधि को यह भी बताना चाहिए कि क्या कोई इनपुट( निविष्टि) समुच्चय में नहीं है - यह संगणनीय रूप से गणना योग्य समुच्चयों के लिए आवश्यक नहीं है।
  • पुनरावर्ती गणना योग्य भाषा एक औपचारिक भाषा का एक संगणनीय रूप से गणना योग्य उपसमुच्चय है।
  • प्रभावी रूप से प्रस्तुत स्वयंसिद्ध प्रणाली में सभी सिद्ध वाक्यों का समुच्चय एक संगणनीय रूप से गणना योग्य समुच्चय है।
  • मटियासेविच के प्रमेय में कहा गया है कि प्रत्येक संगणनीय रूप से गणना योग्य समुच्चय एक डायोफैंटाइन समुच्चय है (विपरीत तुच्छ रूप से सत्य है)।
  • सरल समुच्चय संगणनीय रूप से गणना योग्य हैं लेकिन गणना योग्य नहीं हैं।
  • रचनात्मक समुच्चय संगणनीय रूप से गणना योग्य हैं लेकिन गणना योग्य नहीं हैं।
  • कोई भी उत्पादक समुच्चय संगणनीय रूप से गणना योग्य 'नहीं' है।
  • गोडेल नंबरिंग दी गई संगणनीय कार्यों की, समुच्चय (जहाँ कैंटर पेयरिंग फंक्शन है और दर्शाता है परिभाषित किया गया है) संगणनीय रूप से गणना योग्य है (सी एफ. एक निश्चित 'एक्स' के लिए चित्र)। यह समुच्चय हॉल्टिंग समस्या को संकेतीकरण करता है क्योंकि यह उन निविष्ट मापदण्ड का वर्णन करता है जिसके लिए प्रत्येक ट्यूरिंग मशीन रुकती है।
  • गोडेल नंबरिंग दी गई संगणनीय कार्यों की, समुच्चय गणना योग्य है। यह समुच्चय फलन मान तय करने की समस्या को कूटबद्ध करता है।
  • प्राकृतिक संख्याओं से प्राकृतिक संख्याओं में एक आंशिक फलन f को देखते हुए, f एक आंशिक संगणनीय फलन है यदि केवल f का आरेख, अर्थात सभी जोड़े का समुच्चय ऐसा है कि f(x) परिभाषित है, संगणनीय रूप से गणना योग्य है।

गुण

यदि A और B संगणनीय रूप से गणना योग्य समुच्चय हैं तो A ∩ B, ए ∪ B और A × B (कैंटर पेयरिंग फलन के साथ एकल प्राकृतिक संख्या में प्रतिचित्रित की गई प्राकृतिक संख्याओं की क्रमबद्ध जोड़ी के साथ) संगणनीय रूप से गणना योग्य समुच्चय हैं। आंशिक संगणनीय फलन के अनुसार एक संगणनीय रूप से गणना योग्य समुच्चय का पूर्वाभास एक संगणनीय रूप से गणना योग्य समुच्चय है।

समुच्चय सह-अभिकलनात्‍मक-गणनीय या सह-c.e कहा जाता है। यदि इसका पूरक (समुच्चय सिद्धांत) गणना योग्य है। समतुल्य रूप से, एक समुच्चय सह-आर है। यदि और केवल यदि यह स्तर पर है अंकगणितीय पदानुक्रम का। सह-अभिकलनात्‍मक-गणनीय समुच्चय की जटिलता वर्ग को सह-आर ई निरूपित किया जाता है।

समुच्चय A संगणनीय समुच्चय है यदि और केवल यदि A और A का पूरक दोनों गणना योग्य हैं।

अभिकलनात्‍मक गणनीय योग्य समुच्चय के कुछ जोड़े प्रभावी रूप से वियोज्य हैं और कुछ नहीं हैं।

टिप्पणियाँ

चर्च-ट्यूरिंग थीसिस(अभिधारणा) के अनुसार, कोई भी प्रभावी रूप से गणना करने योग्य फलन एक ट्यूरिंग मशीन द्वारा गणना योग्य है, और इस प्रकार एक समुच्चय 'S' संगणनीय रूप से गणना योग्य है यदि और केवल कुछ कलन विधि है जो 'S' की गणना उत्पन्न करता है। इसे औपचारिक परिभाषा के रूप में नहीं लिया जा सकता है। क्योंकि चर्च-ट्यूरिंग अभिधारणा एक औपचारिक स्वयंसिद्ध के अतिरिक्त एक अनौपचारिक अनुमान है।

कुल गणना योग्य फलन की सीमा के अतिरिक्त आंशिक फलन के प्रभावक्षेत्र के रूप में एक गणना योग्य समुच्चय की परिभाषा, समकालीन ग्रंथों में सामान्य है। यह विकल्प इस तथ्य से प्रेरित है कि सामान्यीकृत पुनरावर्तन सिद्धांतों में, जैसे कि अल्फा पुनरावर्तन सिद्धांत। α-पुनरावृत्ति सिद्धांत, प्रभावक्षेत्र से संबंधित परिभाषा अधिक प्राकृतिक पाई गई है। अन्य पाठ गणनाओं के संदर्भ में परिभाषा का उपयोग करते हैं, जो संगणनीय रूप से गणना योग्य समुच्चयों के बराबर है।

यह भी देखें

  • RE (जटिलता)
  • पुनरावर्ती गणना योग्य भाषा
  • अंकगणितीय पदानुक्रम

संदर्भ

  1. Downey, Rodney G.; Hirschfeldt, Denis R. (29 October 2010). Algorithmic Randomness and Complexity (in English). Springer Science & Business Media. p. 23. ISBN 978-0-387-68441-3.
  • Rogers, H. The Theory of Recursive Functions and Effective Computability, MIT Press. ISBN 0-262-68052-1; ISBN 0-07-053522-1.
  • Soare, R. Recursively enumerable sets and degrees. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1987. ISBN 3-540-15299-7.
  • Soare, Robert I. Recursively enumerable sets and degrees. Bull. Amer. Math. Soc. 84 (1978), no. 6, 1149–1181.