दोहराए जाने वाले दशमलव: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 392: Line 392:
*{{sfrac|6|7}} = 6 × 0.142857... = 0.857142...
*{{sfrac|6|7}} = 6 × 0.142857... = 0.857142...


चक्रीय व्यवहार का कारण लंबे विभाजन के अंकगणितीय अभ्यास से स्पष्ट होता है {{sfrac|1|7}}: अनुक्रमिक अवशेष चक्रीय अनुक्रम होते  हैं {{nowrap|{1, 3, 2, 6, 4, 5}|}}. इस चक्रीय संख्या के अधिक गुणों के लिए लेख 142,857 भी देखते हैं।एक अंश जो चक्रीय है, इस प्रकार समान लंबाई का आवर्ती दशमलव होता है जो दो अनुक्रमों में नाइन के पूरक रूप में विभाजित होता है। उदाहरण के लिए {{sfrac|1|7}} '142' प्रारंभ होता है और उसके बाद '857' होता है {{sfrac|6|7}} (घूर्णन द्वारा) '857' प्रारंभ होता है और उसके बाद इसके नाइन' पूरक '142' आते हैं।
चक्रीय व्यवहार का कारण लंबे विभाजन के अंकगणितीय अभ्यास से स्पष्ट होता है {{sfrac|1|7}}: अनुक्रमिक अवशेष चक्रीय अनुक्रम होते  हैं {{nowrap|{1, 3, 2, 6, 4, 5}|}}. इस चक्रीय संख्या के अधिक गुणों के लिए लेख 142,857 भी देखते हैं।एक अंश जो चक्रीय है, इस प्रकार समान लंबाई का आवर्ती दशमलव होता है जो दो अनुक्रमों में नाइन के पूरक रूप में विभाजित होता है। उदाहरण के लिए {{sfrac|1|7}} '142' प्रारंभ होता है और उसके बाद '857' होता है {{sfrac|6|7}} (घूर्णन द्वारा) '857' प्रारंभ होता है और उसके बाद इसके नौ ' पूरक '142' होते हैं।


एक चक्रीय संख्या के दोहराव का रोटेशन सदैव इस तरह से होता है कि प्रत्येक उत्तरोत्तर पुनरावृत्ति पिछले से बड़ी संख्या होती है। उपरोक्त क्रम में, उदाहरण के लिए, हम देखते हैं कि 0.142857... < 0.285714... < 0.428571... < 0.571428... < 0.714285... < 0.857142.... यह, लंबे दोहराव वाले चक्रीय अंशों के लिए, हमें आसानी से यह अनुमान लगाने की अनुमति देता है कि किसी भी प्राकृतिक संख्या n से अंश को गुणा करने का परिणाम क्या होगा, जब तक कि पुनरावृत्ति ज्ञात हो।
एक चक्रीय संख्या के दोहराव का रोटेशन सदैव इस तरह से होता है कि प्रत्येक उत्तरोत्तर पुनरावृत्ति पिछले से बड़ी संख्या होती है। उपरोक्त क्रम में, उदाहरण के लिए, हम देखते हैं कि 0.142857... < 0.285714... < 0.428571... < 0.571428... < 0.714285... < 0.857142.... यह, लंबे दोहराव वाले चक्रीय अंशों के लिए, हमें आसानी से यह अनुमान लगाने की अनुमति देता है कि किसी भी प्राकृतिक संख्या n से अंश को गुणा करने का परिणाम क्या होगा, जब तक कि पुनरावृत्ति ज्ञात हो।


एक उचित अभाज्य अभाज्य p होता है जो आधार 10 में अंक 1 पर समाप्त होता है और जिसके व्युत्क्रम आधार 10 में लंबाई p − 1 के साथ दोहराव होता है। ऐसे अभाज्यों में, प्रत्येक अंक 0, 1,..., 9 दोहराव में दिखाई देता है उतनी ही बार अनुक्रमित करें जितनी बार दूसरे को अंक देता है (अर्थात्, {{sfrac|''p''&nbsp;−&nbsp;1|10}} टाइम्स)। वे हैं:<ref>Dickson, L. E., ''History of the Theory of Numbers'', Volume 1, Chelsea Publishing Co., 1952.</ref>{{rp|166}}
एक उचित अभाज्य p अभाज्य होता है जो आधार 10 में अंक 1 पर समाप्त होता है और जिसके व्युत्क्रम आधार 10 में लंबाई p − 1 के साथ दोहराव होता है। ऐसे अभाज्यों में, प्रत्येक अंक 0, 1,..., 9 दोहराव में दिखाई देता है उतनी ही बार इसे अनुक्रमित किया जाता है जितनी बार दूसरे अंक को देता है वे (अर्थात्, {{sfrac|''p''&nbsp;−&nbsp;1|10}} टाइम्स)हैं।<ref>Dickson, L. E., ''History of the Theory of Numbers'', Volume 1, Chelsea Publishing Co., 1952.</ref>{{rp|166}}
:61, 131, 181, 461, 491, 541, 571, 701, 811, 821, 941, 971, 1021, 1051, 1091, 1171, 1181, 1291, 1301, 1349, 1381, 1531, 1571, 1621, 1741, 1811, 1829, 1861,... {{OEIS|id=A073761}}.
:61, 131, 181, 461, 491, 541, 571, 701, 811, 821, 941, 971, 1021, 1051, 1091, 1171, 1181, 1291, 1301, 1349, 1381, 1531, 1571, 1621, 1741, 1811, 1829, 1861,... {{OEIS|id=A073761}}.


एक प्राइम उचित प्राइम है यदि और केवल यदि यह 1 मॉड 10 के लिए पूर्ण रीप्टेड प्राइम और [[मॉड्यूलर अंकगणित]]ीय है।
एक प्राइम उचित प्राइम होते है और यदि केवल यह 1 मॉड 10 के लिए पूर्ण रीप्टेड प्राइम और [[मॉड्यूलर अंकगणित]]ीय होते है।


यदि अभाज्य p पूर्ण रीप्टेड अभाज्य और सुरक्षित अभाज्य दोनों है, तब {{sfrac|1|''p''}} p − 1 छद्म-यादृच्छिक संख्याओं|छद्म-यादृच्छिक अंकों की धारा उत्पन्न करेगा। वे अभाज्य हैं
यदि अभाज्य p पूर्ण रीप्टेड अभाज्य और सुरक्षित अभाज्य दोनों है, तब {{sfrac|1|''p''}} p − 1 छद्म-यादृच्छिक संख्याओं|छद्म-यादृच्छिक अंकों की धारा उत्पन्न करता है। और वे अभाज्य हैं
:7, 23, 47, 59, 167, 179, 263, 383, 503, 863, 887, 983, 1019, 1367, 1487, 1619, 1823,... {{OEIS|id=A000353}}.
:7, 23, 47, 59, 167, 179, 263, 383, 503, 863, 887, 983, 1019, 1367, 1487, 1619, 1823,... {{OEIS|id=A000353}}.



Revision as of 11:20, 13 February 2023

दोहरे दशमलव या आवर्ती दशमलव संख्या का दशमलव प्रतिनिधित्व करता है जिसका संख्यात्मक अंक आवधिक कार्य पर निर्भर करता है (नियमित अंतराल पर इसके मूल्यों को दोहराता है) और अनंत दोहराया भाग शून्य नहीं है। इस प्रकार इसमें यह देखा जा सकता है कि यह संख्या परिमेय संख्या है तथा यदि इसका दशमलव निरूपण दोहराया या समाप्त होता है (अर्थात बहुत से अंकों को छोड़कर सभी अंक शून्य हैं)। उदाहरण के लिए, 1/3 का दशमलव प्रतिनिधित्व दशमलव बिंदु के ठीक बाद आवधिक होता है, इस प्रकार एकल अंक 3 को यह सदैव के लिए दोहराता है, अर्थात 0.333.... पर 3227/555 इसका एक अधिक जटिल उदाहरण है, जिसका दशमलव दशमलव बिंदु के बाद दूसरे अंक पर आवधिक मान पूरा हो जाता है और फिर क्रमानुसार 144 को सदैव के लिए अर्थात 5.8144144144.... से दोहराता है, वर्तमान में, दशमलव को दोहराने के लिए भी सार्वभौमिक रूप से स्वीकृत संकेत नहीं होता है।

मुख्य रूप से दोहराए जाने वाले अंकों के अनुक्रम को 'रिपीटेंड' या 'रेप्टेंड' कहा जाता है। यदि पुनरावृत्ति शून्य होती है, तो इस दशमलव निरूपण को दोहराए जाने वाले दशमलव अतिरिक्त 'समाप्त दशमलव' कहा जाता है, क्योंकि शून्य को छोड़ा जा सकता है और दशमलव इन शून्य से पहले समाप्त हो जाता है।[1] प्रत्येक समाप्ति दशमलव प्रतिनिधित्व को दशमलव अंश के रूप में लिखा जा सकता है, अंश जिसका भाजक 10 की शक्ति (गणित) है (उदा। 1.585 = 1585/1000); इसे फॉर्म के अनुपात के रूप में k/2n5m भी लिखा जा सकता है (उदा 1.585 = 317/2352), चूंकि, समाप्ति दशमलव प्रतिनिधित्व के साथ प्रत्येक संख्या में दोहराए जाने वाले दशमलव के रूप में दूसरा, वैकल्पिक प्रतिनिधित्व भी होता है जिसका पुनरावृत्त अंक '9' होता है। यह अंतिम (सबसे दाएं) गैर-शून्य अंक को से घटाकर और 9 का दोहराव जोड़कर प्राप्त किया जाता है। इसके दो उदाहरण हैं 0.999...|1.000... = 0.999...और 1.585000... = 1.584999.... (इस प्रकार के दोहराए जाने वाले दशमलव को लंबे विभाजन द्वारा प्राप्त किया जा सकता है यदि कोई सामान्य विभाजन एल्गोरिथ्म के संशोधित रूप का उपयोग करता है।[2])

कोई भी संख्या जिसे दो पूर्णांक के अनुपात के रूप में व्यक्त नहीं किया जा सकता है, अपरिमेय संख्या कहलाती है। उनका दशमलव निरूपण न तो समाप्त होता है और न ही अनंत रूप से दोहराता है, बल्कि बिना दोहराव के सदैव के लिए विस्तारित होता है (देखें § प्रत्येक परिमेय संख्या या तो एक सांत या आवर्ती दशमलव होती है). ऐसी अपरिमेय संख्याओं के उदाहरण हैं 2 का वर्गमूल2 और पाई |π| इत्यादि।

पृष्ठभूमि

अंकन

दोहराए जाने वाले दशमलवों का प्रतिनिधित्व करने के लिए कई सांकेतिक परंपराएं होती हैं। उनमें से कोई भी सार्वभौमिक रूप से स्वीकार नहीं किया जाता है।

  • संयुक्त राज्य अमेरिका, कनाडा, भारत, फ्रांस, जर्मनी, इटली, स्विट्ज़रलैंड, चेक गणराज्य, स्लोवाकिया और टर्की में परंपरा दोहराव के ऊपर क्षैतिज रेखा (एक विनकुलम (प्रतीक)) खींचना है। (नीचे दी गई तालिका में उदाहरण देखें, कॉलम विनकुलम।)
  • यूनाइटेड किंगडमन्यूज़ीलैंड, ऑस्ट्रेलिया, भारत में, दक्षिण कोरिया और चीन में, दोहराव के सबसे बाहरी अंकों के ऊपर बिंदुओं को रखने की प्रथा है। (नीचे दी गई तालिका, कॉलम डॉट्स में उदाहरण देखें।)
  • यूरोप, वियतनाम और रूस के कुछ हिस्सों में, दोहराव को कोष्ठक में संलग्न करने की प्रथा है। (नीचे तालिका में उदाहरण देखें, स्तंभ कोष्ठक।) यह मानक अनिश्चितता के लिए संकेतन के साथ भ्रम पैदा कर सकता है।
  • स्पेन और कुछ लैटिन अमेरिका देशों में, पुनरावृत्त पर चाप संकेतन का उपयोग विनकुलम और बिंदु संकेतन के विकल्प के रूप में भी किया जाता है। (नीचे दी गई तालिका, कॉलम आर्क में उदाहरण देखें।)
  • अनौपचारिक रूप से, दोहराए जाने वाले दशमलव को अधिकांशतः दीर्घवृत्त (तीन अवधियों, 0.333...) द्वारा दर्शाया जाता है, खासकर जब पिछले संकेतन सम्मेलनों को पहली बार स्कूल में पढ़ाया जाता है। यह संकेतन अनिश्चितता का परिचय देता है कि किन अंकों को दोहराया जाना चाहिए और यहां तक ​​कि क्या पुनरावृत्ति बिल्कुल भी हो रही है, क्योंकि इस तरह के दीर्घवृत्त भी अपरिमेय संख्याओं के लिए नियोजित होते हैं; पाई या π, उदाहरण के लिए, 3.14159... के रूप में प्रदर्शित किया जा सकता है।
उदाहरण
अंश विनकुलम डॉट्स कोष्टक आर्क अंडाकार
1/9 0.1 0..1 0.(1) 0.1 0.111...
1/3 = 3/9 0.3 0..3 0.(3) 0.3 0.333...
2/3 = 6/9 0.6 0..6 0.(6) 0.6 0.666...
9/11 = 81/99 0.81 0..8.1 0.(81) 0.81 0.8181...
7/12 = 525/900 0.583 0.58.3 0.58(3) 0.583 0.58333...
1/7 = 142857/999999 0.142857 0..14285.7 0.(142857) 0.142857 0.142857142857...
1/81 = 12345679/999999999 0.012345679 0..01234567.9 0.(012345679) 0.012345679 0.012345679012345679...
22/7 = 3142854/999999 3.142857 3..14285.7 3.(142857) 3.142857 3.142857142857...

अंग्रेजी में, दोहराए जाने वाले दशमलव को जोर से पढ़ने के कई तरीके हैं। उदाहरण के लिए, 1.234 इसे पढ़ा जा सकता है बिंदु दो तीन चार दोहराता है, बिंदु दो दोहराता है तीन चार, बिंदु दो आवर्ती तीन चार, बिंदु दो दोहराता है तीन चार या बिंदु दो अनंत तीन चार में दोहराता है।

दशमलव विस्तार और पुनरावृत्ति अनुक्रम

भिन्न के रूप में दर्शाई गई परिमेय संख्या को दशमलव रूप में परिवर्तित करने के लिए, दीर्घ विभाजन का उपयोग किया जा सकता है। उदाहरण के लिए, परिमेय संख्या 5/74 पर विचार करें :

      0.0675
   74) 5.00000
        4.44
          560
          518
           420
           370
            500

यहाँ पर ध्यान दें कि प्रत्येक चरण में हमारे पास शेष है; ऊपर प्रदर्शित क्रमिक अवशेष 56, 42, 50 हैं। जब हम शेष के रूप में 50 पर पहुंचते हैं, और 0 को नीचे लाते हैं, तो हम पाते हैं कि हम 500 को 74 से विभाजित कर रहे हैं, जो कि वही समस्या है जिससे हमने प्रारंभिक की थी। इसलिए, दशमलव दोहराता है: 0.0675675675.....

प्रत्येक परिमेय संख्या या तो समाप्ति या आवर्ती दशमलव है

किसी दिए गए भाजक के लिए, केवल परिमित रूप से अनेक भिन्न अवशेष हो सकते हैं। ऊपर दिए गए उदाहरण में, 74 संभावित अवशेष 0, 1, 2, ..., 73 हैं। यदि विभाजन के किसी भी बिंदु पर शेष 0 है, तो विस्तार उस बिंदु पर समाप्त हो जाता है। फिर दोहराव की लंबाई, जिसे अवधि भी कहा जाता है, को 0 के रूप में परिभाषित किया गया है।

यदि 0 कभी भी शेष के रूप में नहीं आता है, तो विभाजन प्रक्रिया सदैव के लिए जारी रहती है, और अंत में, शेष अवश्य होना चाहिए जो पहले हुआ हो। विभाजन में अगला चरण भागफल में वही नया अंक देगा, और वही नया शेषफल, जैसा कि पिछली बार का शेष समान था। इसलिए, निम्न विभाजन उसी परिणाम को दोहराएगा। अंकों के दोहराव क्रम को दोहराव कहा जाता है जिसकी निश्चित लंबाई 0 से अधिक होती है, जिसे अवधि भी कहा जाता है।[3]

प्रत्येक दोहराव या समाप्ति दशमलव परिमेय संख्या है

प्रत्येक दोहराई जाने वाली दशमलव संख्या पूर्णांक गुणांकों के साथ रेखीय समीकरण को संतुष्ट करती है, और इसका अनूठा समाधान परिमेय संख्या है। बाद के बिंदुओं को स्पष्ट करने के लिए, संख्या α = 5.8144144144... उपरोक्त समीकरण को 10000α − 10α = 58144.144144... − 58.144144... = 58086 संतुष्ट करता है, जिसका मान α = 58086/9990 = 3227/555 है, इन पूर्णांक गुणांकों को खोजने की प्रक्रिया का वर्णन किया गया है दोहराए जाने वाले दशमलव को भिन्नों में परिवर्तित करता हैं।

मूल्यों की तालिका

    fraction
    दशमलव

    विस्तार

    10 द्विआधारी

    विस्तार

    2
    1/2 0.5 0 0.1 0
    1/3 0.3 1 0.01 2
    1/4 0.25 0 0.01 0
    1/5 0.2 0 0.0011 4
    1/6 0.16 1 0.001 2
    1/7 0.142857 6 0.001 3
    1/8 0.125 0 0.001 0
    1/9 0.1 1 0.000111 6
    1/10 0.1 0 0.00011 4
    1/11 0.09 2 0.0001011101 10
    1/12 0.083 1 0.0001 2
    1/13 0.076923 6 0.000100111011 12
    1/14 0.0714285 6 0.0001 3
    1/15 0.06 1 0.0001 4
    1/16 0.0625 0 0.0001 0
    fraction
    दशमलव

    विस्तार

    10
    1/17 0.0588235294117647 16
    1/18 0.05 1
    1/19 0.052631578947368421 18
    1/20 0.05 0
    1/21 0.047619 6
    1/22 0.045 2
    1/23 0.0434782608695652173913 22
    1/24 0.0416 1
    1/25 0.04 0
    1/26 0.0384615 6
    1/27 0.037 3
    1/28 0.03571428 6
    1/29 0.0344827586206896551724137931 28
    1/30 0.03 1
    1/31 0.032258064516129 15
    fraction
    दशमलव

    विस्तार

    10
    1/32 0.03125 0
    1/33 0.03 2
    1/34 0.02941176470588235 16
    1/35 0.0285714 6
    1/36 0.027 1
    1/37 0.027 3
    1/38 0.0263157894736842105 18
    1/39 0.025641 6
    1/40 0.025 0
    1/41 0.02439 5
    1/42 0.0238095 6
    1/43 0.023255813953488372093 21
    1/44 0.0227 2
    1/45 0.02 1
    1/46 0.02173913043478260869565 22

इस प्रकार अंश एक इकाई अंश है 1/n और ℓ10 (दशमलव) दोहराव की लंबाई होती है।

लंबाई ℓ10(एन) के दशमलव दोहराने की 1/n, n = 1, 2, 3, ..., हैं:

0, 0, 1, 0, 0, 1, 6, 0, 1, 0, 2, 1, 6, 6, 1, 0, 16, 1, 18, 0, 6, 2, 22, 1, 0 , 6, 3, 6, 28, 1, 15, 0, 2, 16, 6, 1, 3, 18, 6, 0, 5, 6, 21, 2, 1, 22, 46, 1, 42, 0 , 16, 6, 13, 3, 2, 6, 18, 28, 58, 1, 60, 15, 6, 0, 6, 2, 33, 16, 22, 6, 35, 1, 8, 3, 1 , ... (sequence A051626 in the OEIS).

लंबाई कीℓ2(n) तुलना के लिए,बाइनरी संख्या का # प्रतिनिधित्व भिन्नों का दोहराव 1/n, n = 1, 2, 3, ...,होता हैं:

0, 0, 2, 0, 4, 2, 3, 0, 6, 4, 10, 2, 12, 3, 4, 0, 8, 6, 18, 4, 6, 10, 11, 2, 20 , 12, 18, 3, 28, 4, 5, 0, 10, 8, 12, 6, 36, 18, 12, 4, 20, 6, 14, 10, 12, 11, ... (=A007733[एन], यदि एन 2 की शक्ति नहीं है और =0)।

दशमलव की पुनरावृत्ति होती है 1/n, n = 1, 2, 3, ..., हैं। , 384615, 037, 571428, 0344827586206896551724137931, 3, ... (sequence A036275 in the OEIS).

दशमलव दोहराव की लंबाई 1/p, p = 2, 3, 5, ... (nth अभाज्य), हैं:

0, 1, 0, 6, 2, 6, 16, 18, 22, 28, 15, 3, 5, 21, 46, 13, 58, 60, 33, 35, 8, 13, 41, 44, 96 , 4, 34, 53, 108, 112, 42, 130, 8, 46, 148, 75, 78, 81, 166, 43, 178, 180, 95, 192, 98, 99, 30, 222, 113, 228 , 232, 7, 30, 50, 256, 262, 268, 5, 69, 28, ... (sequence A002371 in the OEIS)

जिसके लिए कम से कम परिमेय संख्या p 1/p दशमलव पुनरावृत्त लंबाई n, n = 1, 2, 3, ..., हैं। जिसका मान 859, 757, 29, 3191, 211, ... होता हैं (sequence A007138 in the OEIS)

जिसके लिए कम से कम परिमेय संख्या p k/p के लिए अलग-अलग चक्र हैं जिसका मान (1 ≤ kp−1), n = 1, 2, 3, ..., के बीच होता हैं:

7, 3, 103, 53, 11, 79, 211, 41, 73, 281, 353, 37, 2393, 449, 3061, 1889, 137, 2467, 16189, 641, 3109, 4973, 11087, 1321, 101 , 7151, 7669, 757, 38629, 1231, ... (sequence A054471 in the OEIS).

प्रधान भाजक के साथ अंश

2 या 5 (अर्थात् 10 के सहअभाज्य) के अतिरिक्त अभाज्य संख्या भाजक के साथ सबसे कम शब्दों में अंश सदैव दोहराए जाने वाले दशमलव का उत्पादन करता है। दोहराव की लंबाई (दोहराए जाने वाले दशमलव खंड की अवधि)। 1/p 10 प्रारूपो के लिए p के गुणक क्रम के बराबर होता है। यदि 10 आदिम रूट मॉड्यूलो एन मॉड्यूलो पी है, तो पुनरावृत्त लंबाई p − 1 के बराबर है; यदि नहीं, तो पुनरावृत्त लंबाई p − 1 का कारक है। इस परिणाम को Fermat की छोटी प्रमेय से निकाला जा सकता है, जो बताता है कि 10p−1 ≡ 1 (mod p).

5 से बड़ी किसी भी अभाज्य संख्या के व्युत्क्रम की पुनरावृत्ति का आधार-10 डिजिटल जड़ 9 से विभाज्य है।[4] यदि दोहराव की लंबाई 1/p अभाज्य p के लिए p − 1 के बराबर होती है तो पूर्णांक के रूप में अभिव्यक्त दोहराव को 'चक्रीय संख्या' कहा जाता है।

चक्रीय संख्या

इस समूह से संबंधित अंशों के उदाहरण हैं:

  • 1/7 = 0.142857, 6 दोहराए जाने वाले अंक
  • 1/17 = 0.0588235294117647, 16 दोहराए जाने वाले अंक
  • 1/19 = 0.052631578947368421, 18 दोहराए जाने वाले अंक
  • 1/23 = 0.0434782608695652173913, 22 दोहराए जाने वाले अंक
  • 1/29 = 0.0344827586206896551724137931, 28 दोहराए जाने वाले अंक
  • 1/47 = 0.0212765957446808510638297872340425531914893617, 46 दोहराए जाने वाले अंक
  • 1/59 = 0.0169491525423728813559322033898305084745762711864406779661, 58 दोहराए जाने वाले अंक
  • 1/61 = 0.016393442622950819672131147540983606557377049180327868852459, 60 दोहराए जाने वाले अंक
  • 1/97 = 0.010309278350515463917525773195876288659793814432989690721649484536082474226804123711340206185567, 96 दोहराए जाने वाले अंक

सूची भिन्नों को सम्मलित करने के लिए आगे बढ़ सकती है 1/109, 1/113, 1/131, 1/149, 1/167, 1/179, 1/181, 1/193, वगैरह। (sequence A001913 in the OEIS).

चक्रीय संख्या का प्रत्येक उचित गुणक (अर्थात, अंकों की समान संख्या वाला गुणक) घूर्णन होता है:

  • 1/7 = 1 × 0.142857... = 0.142857...
  • 2/7 = 2 × 0.142857... = 0.285714...
  • 3/7 = 3 × 0.142857... = 0.428571...
  • 4/7 = 4 × 0.142857... = 0.571428...
  • 5/7 = 5 × 0.142857... = 0.714285...
  • 6/7 = 6 × 0.142857... = 0.857142...

चक्रीय व्यवहार का कारण लंबे विभाजन के अंकगणितीय अभ्यास से स्पष्ट होता है 1/7: अनुक्रमिक अवशेष चक्रीय अनुक्रम होते हैं {1, 3, 2, 6, 4, 5}. इस चक्रीय संख्या के अधिक गुणों के लिए लेख 142,857 भी देखते हैं।एक अंश जो चक्रीय है, इस प्रकार समान लंबाई का आवर्ती दशमलव होता है जो दो अनुक्रमों में नाइन के पूरक रूप में विभाजित होता है। उदाहरण के लिए 1/7 '142' प्रारंभ होता है और उसके बाद '857' होता है 6/7 (घूर्णन द्वारा) '857' प्रारंभ होता है और उसके बाद इसके नौ ' पूरक '142' होते हैं।

एक चक्रीय संख्या के दोहराव का रोटेशन सदैव इस तरह से होता है कि प्रत्येक उत्तरोत्तर पुनरावृत्ति पिछले से बड़ी संख्या होती है। उपरोक्त क्रम में, उदाहरण के लिए, हम देखते हैं कि 0.142857... < 0.285714... < 0.428571... < 0.571428... < 0.714285... < 0.857142.... यह, लंबे दोहराव वाले चक्रीय अंशों के लिए, हमें आसानी से यह अनुमान लगाने की अनुमति देता है कि किसी भी प्राकृतिक संख्या n से अंश को गुणा करने का परिणाम क्या होगा, जब तक कि पुनरावृत्ति ज्ञात हो।

एक उचित अभाज्य p अभाज्य होता है जो आधार 10 में अंक 1 पर समाप्त होता है और जिसके व्युत्क्रम आधार 10 में लंबाई p − 1 के साथ दोहराव होता है। ऐसे अभाज्यों में, प्रत्येक अंक 0, 1,..., 9 दोहराव में दिखाई देता है उतनी ही बार इसे अनुक्रमित किया जाता है जितनी बार दूसरे अंक को देता है वे (अर्थात्, p − 1/10 टाइम्स)हैं।[5]: 166 

61, 131, 181, 461, 491, 541, 571, 701, 811, 821, 941, 971, 1021, 1051, 1091, 1171, 1181, 1291, 1301, 1349, 1381, 1531, 1571, 1621, 1741, 1811, 1829, 1861,... (sequence A073761 in the OEIS).

एक प्राइम उचित प्राइम होते है और यदि केवल यह 1 मॉड 10 के लिए पूर्ण रीप्टेड प्राइम और मॉड्यूलर अंकगणितीय होते है।

यदि अभाज्य p पूर्ण रीप्टेड अभाज्य और सुरक्षित अभाज्य दोनों है, तब 1/p p − 1 छद्म-यादृच्छिक संख्याओं|छद्म-यादृच्छिक अंकों की धारा उत्पन्न करता है। और वे अभाज्य हैं

7, 23, 47, 59, 167, 179, 263, 383, 503, 863, 887, 983, 1019, 1367, 1487, 1619, 1823,... (sequence A000353 in the OEIS).

अभाज्य संख्याओं के अन्य व्युत्क्रम

अभाज्य संख्याओं के कुछ व्युत्क्रम जो चक्रीय संख्या उत्पन्न नहीं करते हैं:

  • 1/3 = 0.3, जिसकी अवधि (पुनरावृत्ति लंबाई) 1 है।
  • 1/11 = 0.09, जिसकी अवधि 2 है।
  • 1/13 = 0.076923, जिसकी अवधि 6 है।
  • 1/31 = 0.032258064516129, जिसकी अवधि 15 है।
  • 1/37 = 0.027, जिसकी अवधि 3 है।
  • 1/41 = 0.02439, जिसकी अवधि 5 है।
  • 1/43 = 0.023255813953488372093, जिसकी अवधि 21 है।
  • 1/53 = 0.0188679245283, जिसकी अवधि 13 है।
  • 1/67 = 0.014925373134328358208955223880597, जिसकी अवधि 33 है।

(sequence A006559 in the OEIS) कारण यह है कि 3 9 का भाजक है, 11 99 का भाजक है, 41 99999 का भाजक है, आदि। की अवधि ज्ञात करना 1/p, हम जाँच कर सकते हैं कि क्या अभाज्य p किसी संख्या 999...999 को विभाजित करता है जिसमें अंकों की संख्या p − 1 को विभाजित करती है। चूंकि अवधि कभी भी p − 1 से अधिक नहीं होती है, हम गणना करके इसे प्राप्त कर सकते हैं 10p−1 − 1/p. उदाहरण के लिए, 11 के लिए हमें मिलता है

और फिर निरीक्षण द्वारा 09 की पुनरावृत्ति और 2 की अवधि ज्ञात करें।

अभाज्य संख्याओं के उन व्युत्क्रमों को दोहराए जाने वाले दशमलव के कई क्रमों से जोड़ा जा सकता है। उदाहरण के लिए, के गुणक 1/13 अलग-अलग पुनरावृत्तियों के साथ दो सेटों में विभाजित किया जा सकता है। पहला सेट है:

  • 1/13 = 0.076923...
  • 10/13 = 0.769230...
  • 9/13 = 0.692307...
  • 12/13 = 0.923076...
  • 3/13 = 0.230769...
  • 4/13 = 0.307692...,

जहां प्रत्येक अंश की पुनरावृत्ति 076923 की चक्रीय पुन: व्यवस्था है। दूसरा सेट है:

  • 2/13 = 0.153846...
  • 7/13 = 0.538461...
  • 5/13 = 0.384615...
  • 11/13 = 0.846153...
  • 6/13 = 0.461538...
  • 8/13 = 0.615384...,

जहां प्रत्येक अंश की पुनरावृत्ति 153846 की चक्रीय पुन: व्यवस्था है।

सामान्य तौर पर, प्राइम पी के व्युत्क्रम के उचित गुणकों के सेट में n उपसमुच्चय होते हैं, जिनमें से प्रत्येक की पुनरावृत्ति लंबाई k होती है, जहां nk = p − 1 होता है।

कुल नियम

एक स्वेच्छ पूर्णांक n के लिए, लंबाई L(n) के दशमलव दोहराव का 1/n φ(n) को विभाजित करता है, जहाँ φ कुल कार्य है। लम्बाई के बराबर है φ(n) यदि और केवल यदि 10 आदिम रूट मॉड्यूलो n है।[6] विशेष रूप से, यह इस प्रकार है L(p) = p − 1 यदि और केवल यदि पी प्रमुख है और 10 आदिम रूट मॉड्यूलो पी है। फिर, के दशमलव विस्तार n/p n = 1, 2, ..., p − 1 के लिए, सभी की अवधि p − 1 है और केवल चक्रीय क्रमपरिवर्तन से भिन्न है। ऐसी संख्या p को पूर्ण पुनरावर्ती अभाज्य कहते हैं।

समग्र पूर्णांकों का व्युत्क्रम 10 का सहअभाज्य है

यदि p 2 या 5 के अतिरिक्त कोई अभाज्य संख्या है, तो भिन्न का दशमलव निरूपण 1/p2 दोहराता है:

1/49 = 0.020408163265306122448979591836734693877551.

अवधि (पुनरावृत्ति लंबाई) L(49) λ(49) = 42 का कारक होना चाहिए, जहां λ(n) को कारमाइकल समारोह के रूप में जाना जाता है। यह कारमाइकल फ़ंक्शन | कारमाइकल के प्रमेय से आता है जो बताता है कि यदि n धनात्मक पूर्णांक है तो λ(n) सबसे छोटा पूर्णांक m है जैसे कि

प्रत्येक पूर्णांक a के लिए जो n का सहअभाज्य है।

की अवधि 1/p2 सामान्यतः पीटी हैp, जहां टीp की अवधि है 1/p. ऐसे तीन ज्ञात अभाज्य हैं जिनके लिए यह सत्य नहीं है, और उनके लिए की अवधि 1/p2 की अवधि के समान है 1/p क्योंकि प2 10 को विभाजित करता हैपी−1−1. ये तीन अभाज्य संख्याएँ 3, 487 और 56598313 हैं (sequence A045616 in the OEIS).[7] इसी प्रकार, की अवधि 1/pk सामान्यतः पी हैk–1टीp यदि p और q 2 या 5 के अतिरिक्त अन्य अभाज्य संख्याएँ हैं, तो भिन्न का दशमलव निरूपण 1/pq दोहराता है। उदाहरण है 1/119:

119 = 7 × 17
λ(7 × 17) = लघुत्तम समापवर्त्य(λ(7), λ(17)) = लघुत्तम समापवर्त्य (6, 16) = 48,

जहाँ LCM लघुत्तम समापवर्त्य को दर्शाता है।

की अवधि 'टी' 1/pq λ(pq) का गुणनखंड है और इस मामले में यह 48 होता है:

1/119 = 0.008403361344537815126050420168067226890756302521.

अवधि टी 1/pq एलसीएम है (टीp, टीq), जहां टीp की अवधि है 1/p और टीq की अवधि है 1/q.

यदि p, q, r, आदि 2 या 5 के अतिरिक्त अन्य अभाज्य संख्याएँ हैं, और k, ℓ, m, आदि धनात्मक पूर्णांक हैं, तो

की अवधि के साथ आवर्ती दशमलव है

जहां टीpk, टीq, टीrm,... क्रमशः दोहराए जाने वाले दशमलव की अवधि हैं 1/pk, 1/q, 1/rm,... जैसा कि ऊपर परिभाषित किया गया है।

==पूर्णांकों का व्युत्क्रम 10== का सहअभाज्य नहीं है एक पूर्णांक जो 10 से सहअभाज्य नहीं है, लेकिन 2 या 5 के अतिरिक्त प्रमुख कारक है, पारस्परिक है जो अंततः आवधिक है, लेकिन दोहराए जाने वाले भाग से पहले अंकों के गैर-दोहराए जाने वाले अनुक्रम के साथ। पारस्परिक रूप से व्यक्त किया जा सकता है:

जहाँ a और b दोनों शून्य नहीं हैं।

इस अंश को इस प्रकार भी व्यक्त किया जा सकता है:

यदि ए> बी, या के रूप में

यदि बी> ए, या के रूप में

यदि ए = बी।

दशमलव में है:

  • दशमलव बिंदु के बाद अधिकतम (ए, बी) अंकों का प्रारंभिक संक्रमण। क्षणिक में कुछ या सभी अंक शून्य हो सकते हैं।
  • बाद का दोहराव जो भिन्न के समान ही है 1/pk q.

उदाहरण के लिए 1/28 = 0.03571428:

  • a = 2, b = 0, और अन्य कारक pk q ⋯ = 7
  • 2 प्रारंभिक गैर-दोहराए जाने वाले अंक हैं, 03; और
  • 6 दोहराए जाने वाले अंक हैं, 571428, उतनी ही राशि 1/7 है।

दोहराए जाने वाले दशमलव को अंशों में बदलना

दोहराए जाने वाले दशमलव को देखते हुए, इसे उत्पन्न करने वाले अंश की गणना करना संभव है। उदाहरण के लिए:

(उपर्युक्त पंक्ति के प्रत्येक पक्ष को 10 से गुणा करें)
(पहली पंक्ति को दूसरी से घटाएं)
(न्यूनतम शब्दों में कम करें)

एक और उदाहरण:

(दोहराव की शुरुआत के लिए दशमलव ले जाएं = 1 स्थान से आगे बढ़ें = 10 से गुणा करें)
(दूसरा दोहराव यहाँ पहले के साथ तुलना करें = 2 स्थानों से आगे बढ़ें = 100 से गुणा करें)
(दशमलव स्पष्ट करने के लिए घटाना)
(न्यूनतम शब्दों में कम करें)


एक शॉर्टकट

नीचे दी गई प्रक्रिया को विशेष रूप से लागू किया जा सकता है यदि दोहराव में n अंक हैं, जिनमें से अंतिम 1 को छोड़कर सभी 0 हैं। उदाहरण के लिए n = 7 के लिए:

तो यह विशेष रूप से दोहराए जाने वाला दशमलव अंश के अनुरूप है 1/10n − 1, जहां भाजक वह संख्या है जिसे n 9s के रूप में लिखा जाता है। बस इतना ही जानते हुए, सामान्य दोहराए जाने वाले दशमलव को समीकरण को हल किए बिना अंश के रूप में व्यक्त किया जा सकता है। उदाहरण के लिए, कोई कारण हो सकता है:

दशमलव बिंदु के ठीक बाद, अंश के रूप में प्रारंभ करते हुए, n-अंकीय अवधि (दोहराव लंबाई) के साथ दोहराए जाने वाले दशमलव को व्यक्त करने वाला सामान्य सूत्र प्राप्त करना संभव है:

अधिक स्पष्ट रूप से, निम्नलिखित मामलों को प्राप्त होता है:

यदि दोहराए जाने वाला दशमलव 0 और 1 के बीच है, और दोहराए जाने वाला ब्लॉक n अंक लंबा है, पहले दशमलव बिंदु के ठीक बाद होता है, तो अंश (आवश्यक रूप से कम नहीं) एन-डिजिट ब्लॉक द्वारा विभाजित पूर्णांक संख्या होगी। n 9s द्वारा प्रतिनिधित्व किया। उदाहरण के लिए,

  • 0.444444... = 4/9 चूंकि दोहराए जाने वाला ब्लॉक 4 है (1 अंकों का ब्लॉक),
  • 0.565656... = 56/99 चूंकि दोहराए जाने वाला ब्लॉक 56 (एक 2-अंकीय ब्लॉक) है,
  • 0.012012... = 12/999 चूंकि दोहराए जाने वाला ब्लॉक 012 (एक 3-अंकीय ब्लॉक) है; यह और कम हो जाता है 4/333.
  • 0.999999... = 9/9 = 1, क्योंकि दोहराए जाने वाला ब्लॉक 9 है (1 अंकों का ब्लॉक भी)

यदि दोहराव वाला दशमलव ऊपर जैसा है, सिवाय इसके कि दशमलव बिंदु और दोहराए जाने वाले एन-डिजिट ब्लॉक के बीच k (अतिरिक्त) अंक 0 हैं, तो हर के n अंक 9 के बाद बस k अंक 0 जोड़ सकते हैं (और, जैसा कि पहले, अंश बाद में सरलीकृत किया जा सकता है)। उदाहरण के लिए,

  • 0.000444... = 4/9000 चूंकि दोहराए जाने वाला ब्लॉक 4 है और यह ब्लॉक 3 शून्य से पहले है,
  • 0.005656... = 56/9900 चूंकि दोहराए जाने वाला ब्लॉक 56 है और इसके पहले 2 शून्य हैं,
  • 0.00012012... = 12/99900 = 1/8325 चूंकि दोहराए जाने वाला ब्लॉक 012 है और यह 2 शून्य से पहले है।

किसी भी दोहराए जाने वाले दशमलव को ऊपर वर्णित रूप में नहीं समाप्ति दशमलव के योग के रूप में लिखा जा सकता है और उपरोक्त दो प्रकारों में से के दोहराए जाने वाले दशमलव (वास्तव में पहला प्रकार पर्याप्त है, लेकिन इसके लिए समाप्ति दशमलव को नकारात्मक होने की आवश्यकता हो सकती है)। उदाहरण के लिए,

  • 1.23444... = 1.23 + 0.00444... = 123/100 + 4/900 = 1107/900 + 4/900 = 1111/900
    • या वैकल्पिक रूप से 1.23444... = 0.79 + 0.44444... = 79/100 + 4/9 = 711/900 + 400/900 = 1111/900
  • 0.3789789... = 0.3 + 0.0789789... = 3/10 + 789/9990 = 2997/9990 + 789/9990 = 3786/9990 = 631/1665
    • या वैकल्पिक रूप से 0.3789789... = -0.6 + 0.9789789... = -6/10 + 978/999 = −5994/9990 + 9780/9990 = 3786/9990 = 631/1665

एक और भी तेज़ तरीका है दशमलव बिंदु को पूरी तरह से अनदेखा करना और इस तरह आगे बढ़ना

  • 1.23444... = 1234 − 123/900 = 1111/900 (हर में 9 और दो 0 होते हैं क्योंकि अंक की पुनरावृत्ति होती है और दशमलव बिंदु के बाद दो गैर-दोहराए जाने वाले अंक होते हैं)
  • 0.3789789... = 3789 − 3/9990 = 3786/9990 (हर में तीन 9 और 0 होता है क्योंकि तीन अंकों की पुनरावृत्ति होती है और दशमलव बिंदु के बाद गैर-दोहराव वाला अंक होता है)

यह इस प्रकार है कि आवधिक फ़ंक्शन n के साथ कोई दोहराए जाने वाला दशमलव, और दशमलव बिंदु के बाद k अंक जो दोहराए जाने वाले भाग से संबंधित नहीं है, को (आवश्यक रूप से कम नहीं) अंश के रूप में लिखा जा सकता है जिसका भाजक (10) हैn − 1)10क</सुप>.

इसके विपरीत अंश के दोहराए जाने वाले दशमलव की अवधि c/d (अधिकतम) सबसे छोटी संख्या n होगी जैसे कि 10n − 1, d से विभाज्य है।

उदाहरण के लिए, अंश 2/7 d = 7 है, और सबसे छोटा k जो 10 बनाता हैk − 1 7 से विभाज्य है k = 6, क्योंकि 999999 = 7 × 142857। भिन्न की अवधि 2/7 इसलिए 6 है।

संकुचित रूप में

निम्न चित्र उपरोक्त शॉर्टकट के प्रकार के संपीड़न का सुझाव देता है। जिसके चलते दशमलव संख्या के पूर्णांक भाग के अंकों का प्रतिनिधित्व करता है (दशमलव बिंदु के बाईं ओर), प्रीपरियोड के अंकों की स्ट्रिंग बनाता है और इसकी लंबाई, और लंबाई के साथ दोहराए गए अंकों (अवधि) की स्ट्रिंग होना जो शून्य नहीं है।

गठन नियम

उत्पन्न अंश में, अंक दोहराया जाएगा बार, और अंक दोहराया जाएगा बार।

ध्यान दें कि दशमलव में पूर्णांक भाग की अनुपस्थिति में, शून्य द्वारा दर्शाया जाएगा, जो अन्य अंकों के बाईं ओर होने के कारण अंतिम परिणाम को प्रभावित नहीं करेगा, और जनरेटिंग फ़ंक्शन की गणना में छोड़ा जा सकता है।

उदाहरण: