रेखा बंडल: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Vector bundles of rank 1}} गणित में, एक रेखा बंडल एक रेखा की अवधारणा को व्यक्...")
 
(TEXT)
Line 1: Line 1:
{{Short description|Vector bundles of rank 1}}
{{Short description|Vector bundles of rank 1}}
गणित में, एक रेखा बंडल एक रेखा की अवधारणा को व्यक्त करता है जो एक बिंदु से दूसरे स्थान पर भिन्न होता है। उदाहरण के लिए, प्रत्येक बिंदु पर एक स्पर्श रेखा वाले विमान में एक [[वक्र]] एक अलग रेखा निर्धारित करता है: '[[स्पर्शरेखा]] बंडल' इन्हें व्यवस्थित करने का एक तरीका है। अधिक औपचारिक रूप से, [[बीजगणितीय टोपोलॉजी]] और [[अंतर टोपोलॉजी]] में, एक [[पंक्ति]] बंडल को रैंक 1 के ''[[वेक्टर बंडल]]'' के रूप में परिभाषित किया जाता है।<ref>{{cite book|author=Hartshorne |title=Algebraic Geometry, Arcata 1974|year=1975|url={{Google books|plainurl=y|id=eICMfNiDdigC|page=7|text=line bundle}}|page=7}}</ref>
गणित में, एक रेखा बंडल एक रेखा की अवधारणा को व्यक्त करता है जो एक बिंदु से दूसरे स्थान पर भिन्न होती है। उदाहरण के लिए, प्रत्येक बिंदु पर एक स्पर्श रेखा वाले समतल में एक [[वक्र]] एक भिन्न रेखा निर्धारित करता है: [[स्पर्शरेखा|स्पर्शरेखा बंडल]] इन्हें व्यवस्थित करने की एक शैली है। अधिक औपचारिक रूप से, [[बीजगणितीय टोपोलॉजी|बीजगणितीय सांस्थिति]] और [[अंतर टोपोलॉजी|अवकल सांस्थिति]] में, एक [[पंक्ति|लाइन]] बंडल को श्रेणी 1 के ''[[वेक्टर बंडल|सदिश बंडल]]'' के रूप में परिभाषित किया जाता है।<ref>{{cite book|author=Hartshorne |title=Algebraic Geometry, Arcata 1974|year=1975|url={{Google books|plainurl=y|id=eICMfNiDdigC|page=7|text=line bundle}}|page=7}}</ref>
अंतरिक्ष के प्रत्येक बिंदु के लिए निरंतर तरीके से एक आयामी वेक्टर स्थान चुनकर लाइन बंडल निर्दिष्ट किए जाते हैं। सामयिक अनुप्रयोगों में, यह सदिश स्थान आमतौर पर वास्तविक या जटिल होता है। वास्तविक और जटिल वेक्टर रिक्त स्थान के विभिन्न टोपोलॉजिकल गुणों के कारण दो मामले मौलिक रूप से भिन्न व्यवहार प्रदर्शित करते हैं: यदि मूल को वास्तविक रेखा से हटा दिया जाता है, तो परिणाम 1 × 1 उलटा वास्तविक मैट्रिसेस का सेट होता है, जो [[होमोटॉपी]]-समतुल्य है प्रत्येक सकारात्मक और नकारात्मक वास्तविक को एक बिंदु पर अनुबंधित करके एक [[असतत दो-बिंदु स्थान]]; जबकि जटिल विमान से उत्पत्ति को हटाने से 1 × 1 उलटा जटिल मैट्रिक्स उत्पन्न होता है, जिसमें एक चक्र का होमोटॉपी प्रकार होता है।


[[होमोटॉपी सिद्धांत]] के परिप्रेक्ष्य से, एक वास्तविक रेखा बंडल इसलिए दो-बिंदु फाइबर के साथ एक [[फाइबर बंडल]] के समान ही व्यवहार करता है, जो कि एक [[डबल कवर (टोपोलॉजी)]] की तरह है। इसका एक विशेष मामला एक अलग-अलग मैनिफोल्ड का [[समायोज्य डबल कवर]] है, जहां संबंधित लाइन बंडल टेंगेंट बंडल का निर्धारक बंडल है (नीचे देखें)। मोबियस स्ट्रिप सर्कल के दोहरे कवर (θ → 2θ मैपिंग) से मेल खाती है और फाइबर को बदलकर, दो-बिंदु फाइबर, फाइबर के रूप में [[इकाई अंतराल]], या वास्तविक रेखा के रूप में भी देखा जा सकता है।
समष्टि के प्रत्येक बिंदु के लिए निरंतर प्रक्रिया से एक आयामी सदिश समष्टि पसंद करके लाइन बंडल निर्दिष्ट किए जाते हैं। सांस्थितिक अनुप्रयोगों में, यह सदिश समष्टि सामान्यतः वास्तविक या सम्मिश्र होती है। वास्तविक और सम्मिश्र सदिश समष्टि के विभिन्न सांस्थितिक गुणों के कारण दो प्रकरण मौलिक रूप से भिन्न व्यवहार प्रदर्शित करते हैं: यदि मूल को वास्तविक रेखा से अलग कर दिया जाता है, तो परिणाम 1 × 1 [[व्युत्क्रमणीय]] वास्तविक मेट्रिसेस का समुच्चय होता है, जो सकारात्मक और नकारात्मक वास्तविकताओं को एक बिंदु पर अनुबंधित करके असतत दो-बिंदु स्थान के [[होमोटॉपी]]-समतुल्य है; जबकि सम्मिश्र समतल से उत्पत्ति निवारक से 1 × 1 व्युत्क्रमणीय मिश्रित मैट्रिक्स उत्पन्न होता है, जिसमें एक वृत्त का होमोटॉपी प्रकार होता है।


कॉम्प्लेक्स लाइन बंडल [[सर्कल बंडल]] से निकटता से संबंधित हैं। कुछ विख्यात हैं, उदाहरण के लिए गोले से गोले के हॉफ कंपन।
[[होमोटॉपी सिद्धांत]] के परिप्रेक्ष्य से, एक वास्तविक रेखा बंडल इसलिए एक [[फाइबर बंडल]] के समान व्यवहार करता है जिसमें दो-बिंदु फाइबर होते है, जो कि एक [[डबल कवर (टोपोलॉजी)|उभय आवरण]] की तरह होते है। इसका एक विशेष प्रकरण एक विभिन्न विविध का [[समायोज्य डबल कवर|अभिविन्यसनीय उभय आवरण]] है, जहां संगत रेखा बंडल स्पर्शरेखा बंडल का निर्धारक बंडल है (नीचे देखें)। मोबियस स्ट्रिप वृत्त के उभय आवरण (θ → 2θ मानचित्रण) से समान होती है और फाइबर की परिवर्ती, दो-बिंदु फाइबर, फाइबर के रूप में [[इकाई अंतराल]], या वास्तविक रेखा के रूप में भी देखा जा सकता है।


[[बीजगणितीय ज्यामिति]] में, एक व्युत्क्रमणीय शीफ (अर्थात् रैंक एक का [[स्थानीय रूप से मुक्त शीफ]]) को अक्सर एक लाइन बंडल कहा जाता है।
मिश्रित रेखा बंडल [[सर्कल बंडल|वृत्त बंडल]] से संवृत से संबंधित हैं। कुछ विख्यात हैं, उदाहरण के लिए गोले से गोले की होप्फ़ कंपन।


प्रत्येक पंक्ति बंडल एक विभाजक से निम्न शर्तों के साथ उत्पन्न होता है
[[बीजगणितीय ज्यामिति]] में, एक व्युत्क्रमणीय शीफ (अर्थात् श्रेणी एक का [[स्थानीय रूप से मुक्त शीफ]]) को प्रायः एक रेखा बंडल कहा जाता है।


(I) यदि 'X' कम और अलघुकरणीय योजना है, तो प्रत्येक पंक्ति बंडल एक विभाजक से आता है।
प्रत्येक पंक्ति बंडल एक विभाजक से निम्न परिस्थिति के साथ उत्पन्न होते है


(II) यदि 'X' प्रक्षेपी योजना है तो वही कथन मान्य है।
(I) यदि 'X' कम करने योग्य और अलघुकरणीय योजना है, तो प्रत्येक पंक्ति बंडल एक भाजक से आता है।


== प्रोजेक्टिव स्पेस == पर टॉटोलॉजिकल बंडल
(II) यदि 'X' प्रक्षेपी योजना है तो वही कथन धारण करता है।
{{Main|Tautological line bundle}}
 
बीजगणितीय ज्यामिति में सबसे महत्वपूर्ण लाइन बंडलों में से एक [[प्रक्षेपण स्थान]] पर टॉटोलॉजिकल लाइन बंडल है। एक फ़ील्ड ''k'' पर एक सदिश स्थान ''V'' का प्रक्षेपण P(''V'') किस भागफल के रूप में परिभाषित किया गया है <math>V \setminus \{0\}</math> गुणक समूह k की क्रिया द्वारा<sup>×</sup>. P(''V'') का प्रत्येक बिंदु इसलिए ''k'' की एक प्रति से मेल खाता है<sup>×</sup>, और k की ये प्रतियाँ<sup>×</sup> को k में अस्सेम्ब्ल किया जा सकता है<sup>×</sup>- P(''V'') पर बंडल करें। ''क''<sup>× </sup> k से केवल एक बिंदु से भिन्न होता है, और उस बिंदु को प्रत्येक तंतु से जोड़कर, हमें 'P'(V) पर एक रेखा बंडल मिलता है। इस लाइन बंडल को 'टॉटोलॉजिकल लाइन बंडल' कहा जाता है। इस लाइन बंडल को कभी-कभी निरूपित किया जाता है <math>\mathcal{O}(-1)</math> चूंकि यह सेरे ट्विस्टिंग शीफ के दोहरे से मेल खाता है <math>\mathcal{O}(1)</math>.
== प्रक्षेपण स्थान पर टॉटोलॉजिकल बंडल ==
{{Main|टॉटोलॉजिकल रेखा बंडल}}
बीजगणितीय ज्यामिति में सबसे महत्वपूर्ण रेखा बंडलों में से एक [[प्रक्षेपण स्थान]] पर टॉटोलॉजिकल रेखा बंडल है। क्षेत्र ''k'' पर सदिश समष्टि ''V'' का प्रक्षेपण P(''V'') गुणक समूह ''k''<sup>×</sup> की क्रिया द्वारा <math>V \setminus \{0\}</math> के भागफल के रूप में परिभाषित किया गया है। '''P'''(''V'') का प्रत्येक बिंदु इसलिए ''k''<sup>×</sup> की इन प्रतियों को '''P'''(''V'') पर ''k''<sup>×</sup> बंडल में संयोजित किया जा सकता है।  ''k''<sup>×</sup> ''k'' से केवल एक बिंदु से भिन्न होता है, और उस बिंदु को प्रत्येक तंतु से जोड़कर, हमें '''P'''(''V'') पर एक रेखा बंडल मिलता है। इस रेखा बंडल को टॉटोलॉजिकल रेखा बंडल कहा जाता है। इस रेखा बंडल को कभी-कभी <math>\mathcal{O}(-1)</math> के रूप में दर्शाया जाता है क्योंकि यह सेरे ट्विस्टिंग शीफ के द्वैत <math>\mathcal{O}(1)</math> के समान होता है।


=== प्रोजेक्टिव स्पेस के लिए मानचित्र ===
=== प्रोजेक्टिव स्पेस के लिए मानचित्र ===
मान लीजिए कि X एक स्पेस है और L, X पर एक लाइन बंडल है। L का एक 'ग्लोबल सेक्शन' एक फंक्शन है {{nowrap|s : ''X'' → ''L''}} ऐसा कि अगर {{nowrap|p : ''L'' → ''X''}} प्राकृतिक प्रक्षेपण है, फिर {{nowrap|''ps'' }}= आईडी<sub>''X''</sub>. एक छोटे से पड़ोस में यू में एक्स जिसमें एल तुच्छ है, लाइन बंडल का कुल स्थान यू और अंतर्निहित क्षेत्र के उत्पाद है, और अनुभाग एस एक फ़ंक्शन तक सीमित है {{nowrap|''U'' → ''k''}}. हालाँकि, s के मान तुच्छीकरण के विकल्प पर निर्भर करते हैं, और इसलिए वे केवल कहीं-लुप्त होने वाले फ़ंक्शन द्वारा गुणन तक ही निर्धारित किए जाते हैं।
मान लीजिए कि X एक स्पेस है और L, X पर एक लाइन बंडल है। L का एक 'ग्लोबल सेक्शन' एक फंक्शन है {{nowrap|s : ''X'' → ''L''}} ऐसा कि अगर {{nowrap|p : ''L'' → ''X''}} प्राकृतिक प्रक्षेपण है, फिर {{nowrap|''ps'' }}= आईडी<sub>''X''</sub>. एक छोटे से पड़ोस में यू में एक्स जिसमें एल तुच्छ है, लाइन बंडल का कुल स्थान यू और अंतर्निहित क्षेत्र के उत्पाद है, और अनुभाग एस एक फ़ंक्शन तक सीमित है {{nowrap|''U'' → ''k''}}. हालाँकि, s के मान तुच्छीकरण के विकल्प पर निर्भर करते हैं, और इसलिए वे केवल कहीं-लुप्त होने वाले फ़ंक्शन द्वारा गुणन तक ही निर्धारित किए जाते हैं।


वैश्विक खंड निम्नलिखित तरीके से प्रोजेक्टिव स्पेस के लिए मानचित्र निर्धारित करते हैं: चुनना {{nowrap|''r'' + 1}} एल के फाइबर में सभी शून्य बिंदु 'पी' पर टॉटोलॉजिकल लाइन बंडल का फाइबर नहीं चुनते हैं<sup>आर</sup>, इसलिए चुनना {{nowrap|''r'' + 1}} एल के गैर-एक साथ लुप्त हो रहे वैश्विक खंड एक्स से प्रोजेक्टिव स्पेस 'पी' में मानचित्र निर्धारित करते हैं<sup>आर</सुप>. यह नक्शा एल के तंतुओं को टॉटोलॉजिकल बंडल के दोहरे के तंतुओं में भेजता है। अधिक विशेष रूप से, मान लीजिए {{nowrap|''s''<sub>0</sub>, ..., ''s''<sub>''r''</sub>}} एल के वैश्विक खंड हैं। एक्स में एक छोटे से पड़ोस यू में, ये खंड यू पर के-मूल्यवान कार्यों को निर्धारित करते हैं जिनके मूल्य तुच्छीकरण की पसंद पर निर्भर करते हैं। हालांकि, वे एक गैर-शून्य फ़ंक्शन द्वारा एक साथ गुणा करने के लिए निर्धारित होते हैं, इसलिए उनके अनुपात अच्छी तरह से परिभाषित होते हैं। अर्थात्, एक बिंदु x पर, मान {{nowrap|''s''<sub>0</sub>(''x''), ..., ''s''<sub>''r''</sub>(''x'')}} अच्छी तरह से परिभाषित नहीं हैं क्योंकि तुच्छता में परिवर्तन उन्हें गैर-शून्य निरंतर λ से गुणा करेगा। लेकिन यह उन्हें एक ही निरंतर λ से गुणा करेगा, इसलिए [[सजातीय निर्देशांक]] [एस<sub>0</sub>(एक्स) : ... : एस<sub>''r''</sub>(x)] वर्गों के रूप में अच्छी तरह से परिभाषित हैं {{nowrap|''s''<sub>0</sub>, ..., ''s''<sub>''r''</sub>}} x पर एक साथ लुप्त न हों। इसलिए, यदि खंड कभी एक साथ गायब नहीं होते हैं, तो वे एक रूप निर्धारित करते हैं [एस<sub>0</sub> : ... : एस<sub>''r''</sub>] जो X से 'P' तक का नक्शा देता है<sup>r</sup>, और इस मानचित्र के अंतर्गत टॉटोलॉजिकल बंडल के दोहरे का पुलबैक L है। इस तरह, प्रक्षेपी स्थान एक सार्वभौमिक गुण प्राप्त कर लेता है।
वैश्विक खंड निम्नलिखित तरीके से प्रोजेक्टिव स्पेस के लिए मानचित्र निर्धारित करते हैं: चुनना {{nowrap|''r'' + 1}} एल के फाइबर में सभी शून्य बिंदु 'पी' पर टॉटोलॉजिकल लाइन बंडल का फाइबर नहीं चुनते हैं<sup>आर</sup>, इसलिए चुनना {{nowrap|''r'' + 1}} एल के गैर-एक साथ लुप्त हो रहे वैश्विक खंड एक्स से प्रोजेक्टिव स्पेस 'पी' में मानचित्र निर्धारित करते हैंआर</सुप>. यह नक्शा एल के तंतुओं को टॉटोलॉजिकल बंडल के दोहरे के तंतुओं में भेजता है। अधिक विशेष रूप से, मान लीजिए {{nowrap|''s''<sub>0</sub>, ..., ''s''<sub>''r''</sub>}} एल के वैश्विक खंड हैं। एक्स में एक छोटे से पड़ोस यू में, ये खंड यू पर के-मूल्यवान कार्यों को निर्धारित करते हैं जिनके मूल्य तुच्छीकरण की पसंद पर निर्भर करते हैं। हालांकि, वे एक गैर-शून्य फ़ंक्शन द्वारा एक साथ गुणा करने के लिए निर्धारित होते हैं, इसलिए उनके अनुपात अच्छी तरह से परिभाषित होते हैं। अर्थात्, एक बिंदु x पर, मान {{nowrap|''s''<sub>0</sub>(''x''), ..., ''s''<sub>''r''</sub>(''x'')}} अच्छी तरह से परिभाषित नहीं हैं क्योंकि तुच्छता में परिवर्तन उन्हें गैर-शून्य निरंतर λ से गुणा करेगा। लेकिन यह उन्हें एक ही निरंतर λ से गुणा करेगा, इसलिए सजातीय निर्देशांक [एस0(एक्स) : ... : एसr(x)] वर्गों के रूप में अच्छी तरह से परिभाषित हैं {{nowrap|''s''<sub>0</sub>, ..., ''s''<sub>''r''</sub>}} x पर एक साथ लुप्त न हों। इसलिए, यदि खंड कभी एक साथ गायब नहीं होते हैं, तो वे एक रूप निर्धारित करते हैं [एस0 : ... : एसr] जो X से 'P' तक का नक्शा देता हैr, और इस मानचित्र के अंतर्गत टॉटोलॉजिकल बंडल के दोहरे का पुलबैक L है। इस तरह, प्रक्षेपी स्थान एक सार्वभौमिक गुण प्राप्त कर लेता है।


प्रोजेक्टिव स्पेस के लिए एक मैप निर्धारित करने का सार्वभौमिक तरीका एल के सभी वर्गों के वेक्टर स्पेस के प्रोजेक्टिवाइजेशन के लिए मैप करना है। टोपोलॉजिकल मामले में, प्रत्येक बिंदु पर एक गैर-लुप्त होने वाला खंड होता है जिसे बम्प फ़ंक्शन का उपयोग करके बनाया जा सकता है। बिंदु के एक छोटे से पड़ोस के बाहर गायब हो जाता है। इस वजह से, परिणामी नक्शा हर जगह परिभाषित होता है। हालांकि, कोडोमेन आमतौर पर उपयोगी होने के लिए बहुत बड़ा है। बीजगणितीय और होलोमोर्फिक सेटिंग्स में विपरीत सत्य है। यहां वैश्विक वर्गों का स्थान अक्सर परिमित आयामी होता है, लेकिन किसी दिए गए बिंदु पर कोई गैर-लुप्त होने वाला वैश्विक खंड नहीं हो सकता है। (जैसा कि उस स्थिति में होता है जब यह प्रक्रिया Lefschetz पेंसिल का निर्माण करती है।) वास्तव में, बंडल के लिए यह संभव है कि कोई भी गैर-शून्य वैश्विक खंड न हो; यह टॉटोलॉजिकल लाइन बंडल का मामला है। जब लाइन बंडल पर्याप्त रूप से पर्याप्त होता है तो यह निर्माण [[कोडैरा एम्बेडिंग प्रमेय]] की पुष्टि करता है।
प्रोजेक्टिव स्पेस के लिए एक मैप निर्धारित करने का सार्वभौमिक तरीका एल के सभी वर्गों के वेक्टर स्पेस के प्रोजेक्टिवाइजेशन के लिए मैप करना है। टोपोलॉजिकल प्रकरण में, प्रत्येक बिंदु पर एक गैर-लुप्त होने वाला खंड होता है जिसे बम्प फ़ंक्शन का उपयोग करके बनाया जा सकता है। बिंदु के एक छोटे से पड़ोस के बाहर गायब हो जाता है। इस वजह से, परिणामी नक्शा हर जगह परिभाषित होता है। हालांकि, कोडोमेन आमतौर पर उपयोगी होने के लिए बहुत बड़ा है। बीजगणितीय और होलोमोर्फिक सेटिंग्स में विपरीत सत्य है। यहां वैश्विक वर्गों का स्थान प्रायः परिमित आयामी होता है, लेकिन किसी दिए गए बिंदु पर कोई गैर-लुप्त होने वाला वैश्विक खंड नहीं हो सकता है। (जैसा कि उस स्थिति में होता है जब यह प्रक्रिया Lefschetz पेंसिल का निर्माण करती है।) वास्तव में, बंडल के लिए यह संभव है कि कोई भी गैर-शून्य वैश्विक खंड न हो; यह टॉटोलॉजिकल लाइन बंडल का मामला है। जब लाइन बंडल पर्याप्त रूप से पर्याप्त होता है तो यह निर्माण [[कोडैरा एम्बेडिंग प्रमेय]] की पुष्टि करता है।


== निर्धारक बंडल ==
== निर्धारक बंडल ==
{{See also|Quillen metric#Determinant line bundle of a family of operators}}
{{See also|Quillen metric#Determinant line bundle of a family of operators}}
सामान्य तौर पर यदि V अंतरिक्ष X पर एक सदिश बंडल है, निरंतर फाइबर आयाम n के साथ, V की n-वीं [[बाहरी शक्ति]] फाइबर-दर-फाइबर ली गई एक लाइन बंडल है, जिसे 'निर्धारक रेखा बंडल' कहा जाता है। यह निर्माण विशेष रूप से एक चिकने मैनिफोल्ड के [[स्पर्शरेखा बंडल]] पर लागू होता है। परिणामी निर्धारक बंडल [[टेंसर घनत्व]] की घटना के लिए जिम्मेदार है, इस अर्थ में कि एक [[कुंडा कई गुना]] के लिए इसका एक गैर-विलुप्त वैश्विक खंड है, और किसी भी वास्तविक प्रतिपादक के साथ इसकी टेंसर शक्तियों को परिभाषित किया जा सकता है और टेंसर द्वारा किसी वेक्टर बंडल को 'मोड़' करने के लिए उपयोग किया जाता है। उत्पाद।
सामान्य तौर पर यदि V समष्टि  X पर एक सदिश बंडल है, निरंतर फाइबर आयाम n के साथ, V की n-वीं [[बाहरी शक्ति]] फाइबर-दर-फाइबर ली गई एक लाइन बंडल है, जिसे 'निर्धारक रेखा बंडल' कहा जाता है। यह निर्माण विशेष रूप से एक चिकने मैनिफोल्ड के [[स्पर्शरेखा बंडल]] पर लागू होता है। परिणामी निर्धारक बंडल [[टेंसर घनत्व]] की घटना के लिए जिम्मेदार है, इस अर्थ में कि एक [[कुंडा कई गुना]] के लिए इसका एक गैर-विलुप्त वैश्विक खंड है, और किसी भी वास्तविक प्रतिपादक के साथ इसकी टेंसर शक्तियों को परिभाषित किया जा सकता है और टेंसर द्वारा किसी वेक्टर बंडल को 'मोड़' करने के लिए उपयोग किया जाता है। उत्पाद।


वही निर्माण (शीर्ष बाहरी शक्ति लेना) एक नोथेरियन डोमेन पर एक सूक्ष्म रूप से जेनरेट किए गए मॉड्यूल [[प्रक्षेपी मॉड्यूल]] एम पर लागू होता है और परिणामी उलटा मॉड्यूल को एम के 'निर्धारक मॉड्यूल' कहा जाता है।
वही निर्माण (शीर्ष बाहरी शक्ति लेना) एक नोथेरियन डोमेन पर एक सूक्ष्म रूप से जेनरेट किए गए मॉड्यूल [[प्रक्षेपी मॉड्यूल]] एम पर लागू होता है और परिणामी उलटा मॉड्यूल को एम के 'निर्धारक मॉड्यूल' कहा जाता है।
Line 37: Line 38:
वर्गीकरण समस्या को होमोटॉपी-सैद्धांतिक दृष्टिकोण से अधिक आम तौर पर देखा जा सकता है। वास्तविक रेखा बंडलों के लिए एक सार्वभौमिक बंडल है, और जटिल रेखा बंडलों के लिए एक सार्वभौमिक बंडल है। रिक्त स्थान को वर्गीकृत करने के बारे में सामान्य सिद्धांत के अनुसार, अनुमानी रिक्त स्थान की तलाश करना है, जिस पर संबंधित समूह 'सी' की समूह क्रियाएं (गणित) हैं।<sub>2</sub> और एस<sup>1</sup>, जो निःशुल्क क्रियाएं हैं। वे स्थान सार्वभौमिक [[प्रमुख बंडल]]ों के रूप में काम कर सकते हैं, और वर्गीकृत रिक्त स्थान बीजी के रूप में क्रियाओं के लिए भागफल। इन मामलों में हम वास्तविक और जटिल प्रोजेक्टिव स्पेस के अनंत-आयामी अनुरूपों में स्पष्ट रूप से उनको ढूंढ सकते हैं।
वर्गीकरण समस्या को होमोटॉपी-सैद्धांतिक दृष्टिकोण से अधिक आम तौर पर देखा जा सकता है। वास्तविक रेखा बंडलों के लिए एक सार्वभौमिक बंडल है, और जटिल रेखा बंडलों के लिए एक सार्वभौमिक बंडल है। रिक्त स्थान को वर्गीकृत करने के बारे में सामान्य सिद्धांत के अनुसार, अनुमानी रिक्त स्थान की तलाश करना है, जिस पर संबंधित समूह 'सी' की समूह क्रियाएं (गणित) हैं।<sub>2</sub> और एस<sup>1</sup>, जो निःशुल्क क्रियाएं हैं। वे स्थान सार्वभौमिक [[प्रमुख बंडल]]ों के रूप में काम कर सकते हैं, और वर्गीकृत रिक्त स्थान बीजी के रूप में क्रियाओं के लिए भागफल। इन मामलों में हम वास्तविक और जटिल प्रोजेक्टिव स्पेस के अनंत-आयामी अनुरूपों में स्पष्ट रूप से उनको ढूंढ सकते हैं।


इसलिए वर्गीकरण स्थान ई.पू<sub>2</sub> होमोटॉपी प्रकार का RP है<sup>∞</sup>, सजातीय निर्देशांकों के अनंत अनुक्रम द्वारा दिया गया वास्तविक प्रक्षेप्य स्थान। इसमें सार्वभौमिक वास्तविक रेखा बंडल होता है; होमोटॉपी सिद्धांत के संदर्भ में इसका मतलब है कि [[सीडब्ल्यू कॉम्प्लेक्स]] एक्स पर कोई भी वास्तविक लाइन बंडल एल, एक्स से 'आरपी' के वर्गीकरण मानचित्र को निर्धारित करता है।<sup>∞</sup>, L को यूनिवर्सल बंडल के पुलबैक के लिए एक बंडल आइसोमोर्फिक बनाता है। इस वर्गीकृत मानचित्र का उपयोग 'आरपी' पर एक मानक वर्ग से 'जेड'/2'जेड' गुणांक वाले एक्स के पहले कोहोलॉजी में एल के [[स्टिफ़ेल-व्हिटनी वर्ग]] को परिभाषित करने के लिए किया जा सकता है।<sup>∞</sup>.
इसलिए वर्गीकरण स्थान ई.पू<sub>2</sub> होमोटॉपी प्रकार का RP है<sup>∞</sup>, सजातीय निर्देशांकों के अनंत अनुक्रम द्वारा दिया गया वास्तविक प्रक्षेप्य स्थान। इसमें सार्वभौमिक वास्तविक रेखा बंडल होता है; होमोटॉपी सिद्धांत के संदर्भ में इसका मतलब है कि [[सीडब्ल्यू कॉम्प्लेक्स|सीडब्ल्यू मिश्रित]] एक्स पर कोई भी वास्तविक लाइन बंडल एल, एक्स से 'आरपी' के वर्गीकरण मानचित्र को निर्धारित करता है।<sup>∞</sup>, L को यूनिवर्सल बंडल के पुलबैक के लिए एक बंडल आइसोमोर्फिक बनाता है। इस वर्गीकृत मानचित्र का उपयोग 'आरपी' पर एक मानक वर्ग से 'जेड'/2'जेड' गुणांक वाले एक्स के पहले कोहोलॉजी में एल के [[स्टिफ़ेल-व्हिटनी वर्ग]] को परिभाषित करने के लिए किया जा सकता है।<sup>∞</sup>.


एक समान तरीके से, जटिल प्रोजेक्टिव स्पेस सीपी<sup>∞</sup> एक सार्वभौमिक जटिल लाइन बंडल रखता है। इस मामले में वर्गीकृत नक्शे एच में एक्स के पहले चेर्न वर्ग को जन्म देते हैं<sup>2</sup>(X) (इंटीग्रल कोहोलॉजी)।
एक समान तरीके से, जटिल प्रोजेक्टिव स्पेस सीपी<sup>∞</sup> एक सार्वभौमिक जटिल लाइन बंडल रखता है। इस प्रकरण में वर्गीकृत नक्शे एच में एक्स के पहले चेर्न वर्ग को जन्म देते हैं<sup>2</sup>(X) (इंटीग्रल कोहोलॉजी)।


[[चार का समुदाय]] (वास्तविक आयाम चार) लाइन बंडलों के साथ एक और समान सिद्धांत है। यह वास्तविक चार-आयामी कोहोलॉजी में [[पोंट्रीगिन वर्ग]]ों में से एक को जन्म देता है।
[[चार का समुदाय]] (वास्तविक आयाम चार) लाइन बंडलों के साथ एक और समान सिद्धांत है। यह वास्तविक चार-आयामी कोहोलॉजी में [[पोंट्रीगिन वर्ग]]ों में से एक को जन्म देता है।


इस तरह चारित्रिक वर्गों के सिद्धांत के लिए मूलभूत मामले केवल लाइन बंडलों पर निर्भर करते हैं। एक सामान्य [[विभाजन सिद्धांत]] के अनुसार यह शेष सिद्धांत को निर्धारित कर सकता है (यदि स्पष्ट रूप से नहीं)।
इस तरह चारित्रिक वर्गों के सिद्धांत के लिए मूलभूत प्रकरण केवल लाइन बंडलों पर निर्भर करते हैं। एक सामान्य [[विभाजन सिद्धांत]] के अनुसार यह शेष सिद्धांत को निर्धारित कर सकता है (यदि स्पष्ट रूप से नहीं)।


जटिल मैनिफोल्ड्स पर [[होलोमॉर्फिक लाइन बंडल]]ों के सिद्धांत हैं, और बीजगणितीय ज्यामिति में इन्वर्टिबल शीफ हैं, जो उन क्षेत्रों में एक लाइन बंडल सिद्धांत का काम करते हैं।
जटिल मैनिफोल्ड्स पर [[होलोमॉर्फिक लाइन बंडल]]ों के सिद्धांत हैं, और बीजगणितीय ज्यामिति में इन्वर्टिबल शीफ हैं, जो उन क्षेत्रों में एक लाइन बंडल सिद्धांत का काम करते हैं।

Revision as of 15:11, 11 February 2023

गणित में, एक रेखा बंडल एक रेखा की अवधारणा को व्यक्त करता है जो एक बिंदु से दूसरे स्थान पर भिन्न होती है। उदाहरण के लिए, प्रत्येक बिंदु पर एक स्पर्श रेखा वाले समतल में एक वक्र एक भिन्न रेखा निर्धारित करता है: स्पर्शरेखा बंडल इन्हें व्यवस्थित करने की एक शैली है। अधिक औपचारिक रूप से, बीजगणितीय सांस्थिति और अवकल सांस्थिति में, एक लाइन बंडल को श्रेणी 1 के सदिश बंडल के रूप में परिभाषित किया जाता है।[1]

समष्टि के प्रत्येक बिंदु के लिए निरंतर प्रक्रिया से एक आयामी सदिश समष्टि पसंद करके लाइन बंडल निर्दिष्ट किए जाते हैं। सांस्थितिक अनुप्रयोगों में, यह सदिश समष्टि सामान्यतः वास्तविक या सम्मिश्र होती है। वास्तविक और सम्मिश्र सदिश समष्टि के विभिन्न सांस्थितिक गुणों के कारण दो प्रकरण मौलिक रूप से भिन्न व्यवहार प्रदर्शित करते हैं: यदि मूल को वास्तविक रेखा से अलग कर दिया जाता है, तो परिणाम 1 × 1 व्युत्क्रमणीय वास्तविक मेट्रिसेस का समुच्चय होता है, जो सकारात्मक और नकारात्मक वास्तविकताओं को एक बिंदु पर अनुबंधित करके असतत दो-बिंदु स्थान के होमोटॉपी-समतुल्य है; जबकि सम्मिश्र समतल से उत्पत्ति निवारक से 1 × 1 व्युत्क्रमणीय मिश्रित मैट्रिक्स उत्पन्न होता है, जिसमें एक वृत्त का होमोटॉपी प्रकार होता है।

होमोटॉपी सिद्धांत के परिप्रेक्ष्य से, एक वास्तविक रेखा बंडल इसलिए एक फाइबर बंडल के समान व्यवहार करता है जिसमें दो-बिंदु फाइबर होते है, जो कि एक उभय आवरण की तरह होते है। इसका एक विशेष प्रकरण एक विभिन्न विविध का अभिविन्यसनीय उभय आवरण है, जहां संगत रेखा बंडल स्पर्शरेखा बंडल का निर्धारक बंडल है (नीचे देखें)। मोबियस स्ट्रिप वृत्त के उभय आवरण (θ → 2θ मानचित्रण) से समान होती है और फाइबर की परिवर्ती, दो-बिंदु फाइबर, फाइबर के रूप में इकाई अंतराल, या वास्तविक रेखा के रूप में भी देखा जा सकता है।

मिश्रित रेखा बंडल वृत्त बंडल से संवृत से संबंधित हैं। कुछ विख्यात हैं, उदाहरण के लिए गोले से गोले की होप्फ़ कंपन।

बीजगणितीय ज्यामिति में, एक व्युत्क्रमणीय शीफ (अर्थात् श्रेणी एक का स्थानीय रूप से मुक्त शीफ) को प्रायः एक रेखा बंडल कहा जाता है।

प्रत्येक पंक्ति बंडल एक विभाजक से निम्न परिस्थिति के साथ उत्पन्न होते है

(I) यदि 'X' कम करने योग्य और अलघुकरणीय योजना है, तो प्रत्येक पंक्ति बंडल एक भाजक से आता है।

(II) यदि 'X' प्रक्षेपी योजना है तो वही कथन धारण करता है।

प्रक्षेपण स्थान पर टॉटोलॉजिकल बंडल

बीजगणितीय ज्यामिति में सबसे महत्वपूर्ण रेखा बंडलों में से एक प्रक्षेपण स्थान पर टॉटोलॉजिकल रेखा बंडल है। क्षेत्र k पर सदिश समष्टि V का प्रक्षेपण P(V) गुणक समूह k× की क्रिया द्वारा के भागफल के रूप में परिभाषित किया गया है। P(V) का प्रत्येक बिंदु इसलिए k× की इन प्रतियों को P(V) पर k× बंडल में संयोजित किया जा सकता है। k× k से केवल एक बिंदु से भिन्न होता है, और उस बिंदु को प्रत्येक तंतु से जोड़कर, हमें P(V) पर एक रेखा बंडल मिलता है। इस रेखा बंडल को टॉटोलॉजिकल रेखा बंडल कहा जाता है। इस रेखा बंडल को कभी-कभी के रूप में दर्शाया जाता है क्योंकि यह सेरे ट्विस्टिंग शीफ के द्वैत के समान होता है।

प्रोजेक्टिव स्पेस के लिए मानचित्र

मान लीजिए कि X एक स्पेस है और L, X पर एक लाइन बंडल है। L का एक 'ग्लोबल सेक्शन' एक फंक्शन है s : XL ऐसा कि अगर p : LX प्राकृतिक प्रक्षेपण है, फिर ps = आईडीX. एक छोटे से पड़ोस में यू में एक्स जिसमें एल तुच्छ है, लाइन बंडल का कुल स्थान यू और अंतर्निहित क्षेत्र के उत्पाद है, और अनुभाग एस एक फ़ंक्शन तक सीमित है Uk. हालाँकि, s के मान तुच्छीकरण के विकल्प पर निर्भर करते हैं, और इसलिए वे केवल कहीं-लुप्त होने वाले फ़ंक्शन द्वारा गुणन तक ही निर्धारित किए जाते हैं।

वैश्विक खंड निम्नलिखित तरीके से प्रोजेक्टिव स्पेस के लिए मानचित्र निर्धारित करते हैं: चुनना r + 1 एल के फाइबर में सभी शून्य बिंदु 'पी' पर टॉटोलॉजिकल लाइन बंडल का फाइबर नहीं चुनते हैंआर, इसलिए चुनना r + 1 एल के गैर-एक साथ लुप्त हो रहे वैश्विक खंड एक्स से प्रोजेक्टिव स्पेस 'पी' में मानचित्र निर्धारित करते हैंआर</सुप>. यह नक्शा एल के तंतुओं को टॉटोलॉजिकल बंडल के दोहरे के तंतुओं में भेजता है। अधिक विशेष रूप से, मान लीजिए s0, ..., sr एल के वैश्विक खंड हैं। एक्स में एक छोटे से पड़ोस यू में, ये खंड यू पर के-मूल्यवान कार्यों को निर्धारित करते हैं जिनके मूल्य तुच्छीकरण की पसंद पर निर्भर करते हैं। हालांकि, वे एक गैर-शून्य फ़ंक्शन द्वारा एक साथ गुणा करने के लिए निर्धारित होते हैं, इसलिए उनके अनुपात अच्छी तरह से परिभाषित होते हैं। अर्थात्, एक बिंदु x पर, मान s0(x), ..., sr(x) अच्छी तरह से परिभाषित नहीं हैं क्योंकि तुच्छता में परिवर्तन उन्हें गैर-शून्य निरंतर λ से गुणा करेगा। लेकिन यह उन्हें एक ही निरंतर λ से गुणा करेगा, इसलिए सजातीय निर्देशांक [एस0(एक्स) : ... : एसr(x)] वर्गों के रूप में अच्छी तरह से परिभाषित हैं s0, ..., sr x पर एक साथ लुप्त न हों। इसलिए, यदि खंड कभी एक साथ गायब नहीं होते हैं, तो वे एक रूप निर्धारित करते हैं [एस0 : ... : एसr] जो X से 'P' तक का नक्शा देता हैr, और इस मानचित्र के अंतर्गत टॉटोलॉजिकल बंडल के दोहरे का पुलबैक L है। इस तरह, प्रक्षेपी स्थान एक सार्वभौमिक गुण प्राप्त कर लेता है।

प्रोजेक्टिव स्पेस के लिए एक मैप निर्धारित करने का सार्वभौमिक तरीका एल के सभी वर्गों के वेक्टर स्पेस के प्रोजेक्टिवाइजेशन के लिए मैप करना है। टोपोलॉजिकल प्रकरण में, प्रत्येक बिंदु पर एक गैर-लुप्त होने वाला खंड होता है जिसे बम्प फ़ंक्शन का उपयोग करके बनाया जा सकता है। बिंदु के एक छोटे से पड़ोस के बाहर गायब हो जाता है। इस वजह से, परिणामी नक्शा हर जगह परिभाषित होता है। हालांकि, कोडोमेन आमतौर पर उपयोगी होने के लिए बहुत बड़ा है। बीजगणितीय और होलोमोर्फिक सेटिंग्स में विपरीत सत्य है। यहां वैश्विक वर्गों का स्थान प्रायः परिमित आयामी होता है, लेकिन किसी दिए गए बिंदु पर कोई गैर-लुप्त होने वाला वैश्विक खंड नहीं हो सकता है। (जैसा कि उस स्थिति में होता है जब यह प्रक्रिया Lefschetz पेंसिल का निर्माण करती है।) वास्तव में, बंडल के लिए यह संभव है कि कोई भी गैर-शून्य वैश्विक खंड न हो; यह टॉटोलॉजिकल लाइन बंडल का मामला है। जब लाइन बंडल पर्याप्त रूप से पर्याप्त होता है तो यह निर्माण कोडैरा एम्बेडिंग प्रमेय की पुष्टि करता है।

निर्धारक बंडल

सामान्य तौर पर यदि V समष्टि X पर एक सदिश बंडल है, निरंतर फाइबर आयाम n के साथ, V की n-वीं बाहरी शक्ति फाइबर-दर-फाइबर ली गई एक लाइन बंडल है, जिसे 'निर्धारक रेखा बंडल' कहा जाता है। यह निर्माण विशेष रूप से एक चिकने मैनिफोल्ड के स्पर्शरेखा बंडल पर लागू होता है। परिणामी निर्धारक बंडल टेंसर घनत्व की घटना के लिए जिम्मेदार है, इस अर्थ में कि एक कुंडा कई गुना के लिए इसका एक गैर-विलुप्त वैश्विक खंड है, और किसी भी वास्तविक प्रतिपादक के साथ इसकी टेंसर शक्तियों को परिभाषित किया जा सकता है और टेंसर द्वारा किसी वेक्टर बंडल को 'मोड़' करने के लिए उपयोग किया जाता है। उत्पाद।

वही निर्माण (शीर्ष बाहरी शक्ति लेना) एक नोथेरियन डोमेन पर एक सूक्ष्म रूप से जेनरेट किए गए मॉड्यूल प्रक्षेपी मॉड्यूल एम पर लागू होता है और परिणामी उलटा मॉड्यूल को एम के 'निर्धारक मॉड्यूल' कहा जाता है।

विशेषता वर्ग, सार्वभौमिक बंडल और वर्गीकरण स्थान

पहला स्टिफ़ेल-व्हिटनी वर्ग चिकनी वास्तविक रेखा बंडलों को वर्गीकृत करता है; विशेष रूप से, वास्तविक रेखा बंडलों का संग्रह (तुल्यता वर्ग) Z/2Z गुणांक के साथ पहले कोहोलॉजी के तत्वों के अनुरूप है; यह पत्राचार वास्तव में एबेलियन समूहों का एक समरूपता है (समूह संचालन लाइन बंडलों के टेंसर उत्पाद हैं और कोहोलॉजी पर सामान्य जोड़ हैं)। समान रूप से, पहला चेर्न वर्ग एक स्थान पर चिकनी जटिल लाइन बंडलों को वर्गीकृत करता है, और लाइन बंडलों का समूह पूर्णांक गुणांक वाले दूसरे कोहोलॉजी वर्ग के लिए आइसोमॉर्फिक है। हालांकि, बंडलों में समतुल्य चिकनी संरचनाएं हो सकती हैं (और इस प्रकार वही पहली चेर्न क्लास) लेकिन विभिन्न होलोमोर्फिक संरचनाएं। कई गुना पर शीफ (गणित) के घातीय अनुक्रम का उपयोग करके चेर्न वर्ग के बयान आसानी से सिद्ध होते हैं।

वर्गीकरण समस्या को होमोटॉपी-सैद्धांतिक दृष्टिकोण से अधिक आम तौर पर देखा जा सकता है। वास्तविक रेखा बंडलों के लिए एक सार्वभौमिक बंडल है, और जटिल रेखा बंडलों के लिए एक सार्वभौमिक बंडल है। रिक्त स्थान को वर्गीकृत करने के बारे में सामान्य सिद्धांत के अनुसार, अनुमानी रिक्त स्थान की तलाश करना है, जिस पर संबंधित समूह 'सी' की समूह क्रियाएं (गणित) हैं।2 और एस1, जो निःशुल्क क्रियाएं हैं। वे स्थान सार्वभौमिक प्रमुख बंडलों के रूप में काम कर सकते हैं, और वर्गीकृत रिक्त स्थान बीजी के रूप में क्रियाओं के लिए भागफल। इन मामलों में हम वास्तविक और जटिल प्रोजेक्टिव स्पेस के अनंत-आयामी अनुरूपों में स्पष्ट रूप से उनको ढूंढ सकते हैं।

इसलिए वर्गीकरण स्थान ई.पू2 होमोटॉपी प्रकार का RP है, सजातीय निर्देशांकों के अनंत अनुक्रम द्वारा दिया गया वास्तविक प्रक्षेप्य स्थान। इसमें सार्वभौमिक वास्तविक रेखा बंडल होता है; होमोटॉपी सिद्धांत के संदर्भ में इसका मतलब है कि सीडब्ल्यू मिश्रित एक्स पर कोई भी वास्तविक लाइन बंडल एल, एक्स से 'आरपी' के वर्गीकरण मानचित्र को निर्धारित करता है।, L को यूनिवर्सल बंडल के पुलबैक के लिए एक बंडल आइसोमोर्फिक बनाता है। इस वर्गीकृत मानचित्र का उपयोग 'आरपी' पर एक मानक वर्ग से 'जेड'/2'जेड' गुणांक वाले एक्स के पहले कोहोलॉजी में एल के स्टिफ़ेल-व्हिटनी वर्ग को परिभाषित करने के लिए किया जा सकता है।.

एक समान तरीके से, जटिल प्रोजेक्टिव स्पेस सीपी एक सार्वभौमिक जटिल लाइन बंडल रखता है। इस प्रकरण में वर्गीकृत नक्शे एच में एक्स के पहले चेर्न वर्ग को जन्म देते हैं2(X) (इंटीग्रल कोहोलॉजी)।

चार का समुदाय (वास्तविक आयाम चार) लाइन बंडलों के साथ एक और समान सिद्धांत है। यह वास्तविक चार-आयामी कोहोलॉजी में पोंट्रीगिन वर्गों में से एक को जन्म देता है।

इस तरह चारित्रिक वर्गों के सिद्धांत के लिए मूलभूत प्रकरण केवल लाइन बंडलों पर निर्भर करते हैं। एक सामान्य विभाजन सिद्धांत के अनुसार यह शेष सिद्धांत को निर्धारित कर सकता है (यदि स्पष्ट रूप से नहीं)।

जटिल मैनिफोल्ड्स पर होलोमॉर्फिक लाइन बंडलों के सिद्धांत हैं, और बीजगणितीय ज्यामिति में इन्वर्टिबल शीफ हैं, जो उन क्षेत्रों में एक लाइन बंडल सिद्धांत का काम करते हैं।

यह भी देखें

टिप्पणियाँ

  1. Hartshorne (1975). Algebraic Geometry, Arcata 1974. p. 7.


संदर्भ