गतिशील संतुलन: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 66: | Line 66: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 06/02/2023]] | [[Category:Created On 06/02/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 12:30, 14 February 2023
रसायन विज्ञान में, उत्क्रमणीय अभिक्रिया होने के बाद एक गतिशील संतुलन स्थित होता है। पदार्थ अभिकारकों और उत्पादों(रसायन विज्ञान) के बीच समान अभिक्रिया दरों पर संक्रमण करते हैं, जिसका अर्थ है कि कोई शुद्ध परिवर्तन नहीं है। अभिकारक और उत्पाद ऐसी दर से बनते हैं कि न तो सांद्रता में परिवर्तन होता है। यह स्थिर अवस्था में प्रणाली का विशेष उदाहरण है।
भौतिकी में, ऊष्मप्रवैगिकी के संबंध में, एक बंद प्रणाली ऊष्मप्रवैगिक संतुलन में होती है जब अभिक्रियाएं ऐसी दरों पर होती हैं कि मिश्रण की संरचना समय के साथ बदलती नहीं है। अभिक्रिया निश्चित होती है, कभी-कभी उत्तेजित, परन्तु इस हद तक कि रचना में परिवर्तन नहीं देखा जा सकता है। प्रतिवर्ती अभिक्रियाओं के लिए दर स्थिरांक के संदर्भ में संतुलन स्थिरांक व्यक्त किए जा सकते हैं।
उदाहरण
सोडा की एक नवीनतम बोतल में, तरल अवस्था में कार्बन डाईऑक्साइड की सांद्रता का एक विशेष महत्व होता है। यदि आधा तरल बाहर डाला जाता है और बोतल को बंद कर दिया जाता है, तो कार्बन डाइऑक्साइड तरल अवस्था को निरन्तर घटती दर पर छोड़ देगा, और गैस अवस्था में कार्बन डाइऑक्साइड का आंशिक दबाव संतुलन तक पहुंचने तक बढ़ जाएगा। उस बिंदु पर, ऊष्मीय गति के कारण, CO2 का एक अणु तरल अवस्था को छोड़ सकता है, परन्तु बहुत ही कम समय के भीतर CO2 का एक और अणु गैस से तरल में और इसके विपरीत पारित हो जाएगा। संतुलन पर, गैस से तरल अवस्था में CO2 के स्थानांतरण की दर तरल से गैस की दर के बराबर होती है। इस विषय में, तरल में CO2 की संतुलन सांद्रता हेनरी के नियम द्वारा दी गई है, जिसमें कहा गया है कि तरल में गैस की घुलनशीलता तरल के ऊपर उस गैस के आंशिक दबाव के सीधे आनुपातिक होती है।[1] इस संबंध को
रूप में लिखा जाता है जहाँ K एक तापमान-निर्भर स्थिरांक है, P आंशिक दबाव है, और c तरल में घुली हुई गैस की सांद्रता है। इस प्रकार हेनरी के नियम का पालन करने तक गैस में CO2 का आंशिक दबाव बढ़ गया है। तरल में कार्बन डाइऑक्साइड की सांद्रता कम हो गई है और पेय ने अपनी कुछ गैस खो दी है।
हेनरी का नियम कार्बन डाइऑक्साइड की रासायनिक क्षमता को दो अवस्थाओं में एक दूसरे के बराबर होने के लिए निर्धारित करके प्राप्त किया जा सकता है। रासायनिक क्षमता की समानता रासायनिक संतुलन को परिभाषित करती है। गतिशील संतुलन के लिए अन्य स्थिरांक जिसमें अवस्था परिवर्तन सम्मिलित हैं, में विभाजन गुणांक और घुलनशीलता उत्पाद सम्मिलित हैं। राउल्ट का नियम एक आदर्श विलयन के संतुलन वाष्प दबाव को परिभाषित करता है
एकल-अवस्था प्रणाली में गतिशील संतुलन भी स्थित हो सकता है। एक साधारण उदाहरण अम्ल क्षार संतुलन के साथ होता है जैसे कि एक जलीय घोल में एसीटिक अम्ल का पृथक्करण।
संतुलन पर सांद्रता(रसायन विज्ञान) भागफल, K, अम्ल पृथक्करण स्थिरांक, स्थिर है (कुछ स्थितियों के अधीन)
इस स्थिति में, अग्र अभिक्रिया में एसिटिक अम्ल के अणुओं से कुछ प्रोटॉन की मुक्ति सम्मिलित होती है और पश्च की अभिक्रिया में एसिटिक अम्ल के अणुओं का निर्माण होता है जब एक एसीटेट आयन एक प्रोटॉन को स्वीकार करता है। संतुलन तब प्राप्त होता है जब संतुलन व्यंजक के बाईं ओर की प्रजातियों की रासायनिक क्षमता का योग दाईं ओर की प्रजातियों की रासायनिक क्षमता के योग के बराबर होता है। इसी समय, अग्र और पश्च की अभिक्रियाओं की दर एक दूसरे के बराबर होती है। रासायनिक परिसरों के गठन से जुड़े संतुलन भी गतिशील संतुलन हैं और सांद्रता परिसरों की स्थिरता स्थिरांक द्वारा नियंत्रित होती हैं।
गतिशील संतुलन गैस अवस्था में भी हो सकता है, उदाहरण के लिए जब नाइट्रोजन डाइऑक्साइड मंद हो जाता है।
- ;
गैस अवस्था में वर्ग कोष्ठक आंशिक दबाव का संकेत देते हैं। वैकल्पिक रूप से, किसी पदार्थ के आंशिक दबाव को P(पदार्थ) के रूप में लिखा जा सकता है।[2]
संतुलन और दर स्थिरांक के बीच संबंध
समावयवीकरण जैसी सरल अभिक्रिया में:
विचार करने के लिए दो अभिक्रियाएँ हैं, अग्र अभिक्रिया जिसमें प्रजाति A को B में परिवर्तित किया जाता है और पश्च अभिक्रिया जिसमें B को A में परिवर्तित किया जाता है। यदि दोनों अभिक्रियाएँ प्राथमिक अभिक्रियाएँ हैं, तो अभिक्रिया की दर द्वारा दी गई है[3]:
जहाँ kf अग्र अभिक्रिया के लिए दर स्थिर है और kb पश्च अभिक्रिया के लिए दर स्थिर है और वर्ग कोष्ठक, […], सांद्रता को दर्शाता है। यदि प्रारम्भ में मात्र A स्थित है, तो समय t = 0, सांद्रता [A]0 के साथ, दो सांद्रता का योग, [A]t और [B]t, समय t पर, [A]0 के बराबर होगा।
इस अंतर समीकरण का हल है
और दाईं ओर दिखाया गया है। जैसे-जैसे समय अनंत की ओर बढ़ता है, सांद्रता [A]t और [B]t स्थिर महत्वों की ओर प्रवृत्त होते हैं। उपरोक्त व्यंजक में t को अनंत तक पहुंचें, अर्थात t → ∞:
क्रिया में, के बाद सांद्रता परिवर्तन मापने योग्य नहीं होंगे। चूंकि इसके बाद सांद्रता में परिवर्तन नहीं होता है, वे परिभाषा के अनुसार संतुलन रसायन शास्त्र(संतुलन सांद्रता) हैं। अब, अभिक्रिया के लिए संतुलन स्थिरांक को इस प्रकार परिभाषित किया गया है
यह इस प्रकार है कि संतुलन स्थिरांक संख्यात्मक रूप से दर स्थिरांक के भागफल के बराबर होता है।
सामान्यतः पर वे एक से अधिक अग्र अभिक्रिया और एक से अधिक पश्च अभिक्रिया हो सकते हैं। एटकिंस [4] कहते हैं कि, एक सामान्य अभिक्रिया के लिए, समग्र संतुलन स्थिरांक प्राथमिक अभिक्रियाओं की दर स्थिरांक से
से संबंधित होता है
यह भी देखें
- संतुलन रसायन
- यांत्रिक संतुलन
- रासायनिक संतुलन
- विकिरण संतुलन
संदर्भ
Atkins, P.W.; de Paula, J. (2006). Physical Chemistry (8th. ed.). Oxford University Press. ISBN 0-19-870072-5.