स्वतुल्य संबंध: Difference between revisions

From Vigyanwiki
Line 16: Line 16:
;{{visible anchor|वाम अर्ध-प्रतिवर्त|Left quasi-reflexivity}}: यदि जब भी <math>x, y \in X</math> ऐसा हो कि <math>x R y,</math> तो अनिवार्य रूप से <math>x R x.</math> होगा।<ref name="Britannica">The [https://www.britannica.com/topic/formal-logic/Logical-manipulations-in-LPC#ref534730 Encyclopedia Britannica] calls this property quasi-reflexivity.</ref>
;{{visible anchor|वाम अर्ध-प्रतिवर्त|Left quasi-reflexivity}}: यदि जब भी <math>x, y \in X</math> ऐसा हो कि <math>x R y,</math> तो अनिवार्य रूप से <math>x R x.</math> होगा।<ref name="Britannica">The [https://www.britannica.com/topic/formal-logic/Logical-manipulations-in-LPC#ref534730 Encyclopedia Britannica] calls this property quasi-reflexivity.</ref>
;{{visible anchor|दाँयाँ अर्ध-प्रतिवर्त|Right quasi-reflexivity|Right quasi-reflexive relation}}: यदि जब भी <math>x, y \in X</math> ऐसा हो कि  <math>x R y,</math> तो अनिवार्य रूप से  <math>y R y.</math>होगा।
;{{visible anchor|दाँयाँ अर्ध-प्रतिवर्त|Right quasi-reflexivity|Right quasi-reflexive relation}}: यदि जब भी <math>x, y \in X</math> ऐसा हो कि  <math>x R y,</math> तो अनिवार्य रूप से  <math>y R y.</math>होगा।
;{{visible anchor|Quasi-reflexive|Quasi-reflexivity}}: यदि हर तत्व जो कुछ संबंध का हिस्सा है, तो वह स्वयं से संबंधित है।स्पष्ट रूप से, इसका मतलब है कि जब भी <math>x, y \in X</math> ऐसे हैं कि <math>x R y,</math> फिर जरूरी <math>x R x</math> {{em|and}} <math>y R y.</math> समान रूप से, एक द्विआधारी संबंध अर्ध-रिफ्लेक्सिव है यदि और केवल अगर यह दोनों बाएं अर्ध-रिफ्लेक्सिव और राइट क्वैसी-रिफ्लेक्सिव है।एक संबंध <math>R</math> अगर और केवल अगर इसका [[सममित बंद]] होना <math>R \cup R^{\operatorname{T}}</math> बाएं (या दाएं) अर्ध-रिफ्लेक्सिव है।
;{{visible anchor|अर्ध-प्रतिवर्त|Quasi-reflexivity}}: यदि हर तत्व जो कुछ संबंध का हिस्सा है, तो वह स्वयं से संबंधित है। स्पष्ट रूप से, इसका अर्थ यह है कि जब भी <math>x, y \in X</math> ऐसा होता है कि <math>x R y,</math> तो अनिवार्य रूप से  <math>x R x</math> {{em|and}} <math>y R y.</math> होता है। समतुल्य रूप से, एक द्विआधारी संबंध अर्ध-प्रतिवर्त है यदि और केवल यदि यह दोनों अर्ध-प्रतिवर्त और दायां अर्ध-प्रतिवर्त है। एक संबंध <math>R</math> अर्ध-प्रतिवर्ती है यदि और केवल यदि इसका सममित संवरण <math>R \cup R^{\operatorname{T}}</math> बाएं (या दाएं) अर्ध-प्रतिवर्ती है।


[[असंबद्ध संबंध]] संबंध: जब भी <math>x, y \in X</math> ऐसे हैं कि <math>x R y \text{ and } y R x,</math> फिर जरूरी <math>x = y.</math> ;{{visible anchor|Coreflexive|Coreflexivity|Coreflexive relation}}: जब भी <math>x, y \in X</math> ऐसे हैं कि <math>x R y,</math> फिर जरूरी <math>x = y.</math><ref>Fonseca de Oliveira, J. N., & Pereira Cunha Rodrigues, C. D. J. (2004). Transposing Relations: From Maybe Functions to Hash Tables. In Mathematics of Program Construction (p. 337).</ref> एक संबंध <math>R</math> कोरफ्लेक्सिव है अगर और केवल अगर इसका सममित बंद एंटीसिमेट्रिक संबंध है। एंटी-सममितीय।
[[असंबद्ध संबंध|प्रतिसममित संबंध]]:  


एक गैर -रिक्त सेट पर एक रिफ्लेक्टिव संबंध <math>X</math> न तो अकाट्य हो सकता है, न ही असममित संबंध (<math>R</math> कहा जाता है {{em|asymmetric}} अगर <math>x R y</math> तात्पर्य नहीं है <math>y R x</math>), और न ही प्रतिवाद (<math>R</math> है {{em|antitransitive}} अगर <math>x R y \text{ and } y R z</math> तात्पर्य नहीं है <math>x R z</math>)।
यदि जब भी <math>x, y \in X</math> ऐसा हो कि <math>x R y \text{ and } y R x,</math> तो अनिवार्य रूप से  <math>x = y.</math> होगा।
 
 
व{{visible anchor|सहप्रतिवर्ती|Coreflexivity|Coreflexive relation}}: यदि जब भी  <math>x, y \in X</math> ऐसा हो कि <math>x R y,</math> तो अनिवार्य रूप से <math>x = y.</math><ref>Fonseca de Oliveira, J. N., & Pereira Cunha Rodrigues, C. D. J. (2004). Transposing Relations: From Maybe Functions to Hash Tables. In Mathematics of Program Construction (p. 337).</ref>होगा। एक संबंध <math>R</math> सहप्रतिवर्ती है अगर और केवल अगर इसकी सममित बंद विरोधी-सममित है।
 
एक अरिक्त समूह <math>X</math> पर एक रिफ्लेक्सिव संबंध न तो अपरिवर्तनीय हो सकता है, और न ही असममित (<math>R</math> को असममित कहा जाता है यदि  <math>x R y</math> का तात्पर्य <math>y R x</math> नहीं है ), और न ही प्रतिसंक्रमणीय (<math>R</math> प्रतिसंक्रमणीय है यदि  <math>x R y \text{ and } y R z</math> का अर्थ <math>x R z</math> नहीं है )।


== उदाहरण ==
== उदाहरण ==

Revision as of 21:29, 13 February 2023

गणित में, एक समुच्चय(गणित) x पर एक द्विआधारी संबंध r 'प्रतिवर्त' होता है यदि यह x के प्रत्येक तत्व को स्वयं से संबंधित करता है।[1][2] वास्तविक संख्याओं के समुच्चय पर स्वतुल्य संबंध का एक उदाहरण "के बराबर है" क्योंकि प्रत्येक वास्तविक संख्या स्वयं के बराबर होती है। कहा जाता है कि एक रिफ्लेक्सिव रिलेशन में रिफ्लेक्सिव प्रॉपर्टी या रिफ्लेक्सिविटी होती है। समरूपता और संक्रामकता के साथ-साथ रिफ्लेक्सीविटी तुल्यता संबंधों को परिभाषित करने वाले तीन गुणों में से एक है।

परिभाषाएँ

माना कि एक समूह पर एक द्विआधारी संबंध है, जो परिभाषा के अनुसार का एक उपसमुच्चय है। किसी के लिए अंकन मतलब कि जबकि नहीं मतलब कि सम्बन्ध कहा जाता है reflexive अगर हरएक के लिए या समतुल्य रूप से, अगर कहाँ पे पर पहचान के संबंध को दर्शाता है

reflexive closure }} का  संघ है  जिसे समतुल्य रूप से सबसे छोटे के रूप में परिभाषित किया जा सकता है) ) पर रिफ्लेक्टिव रिलेशनशिप  यह एक बगुला है  एक संबंध  यदि और केवल अगर यह अपने रिफ्लेक्टिव क्लोजर के बराबर है तो रिफ्लेक्टिव है। reflexive reduction }} या irreflexive kernel का  सबसे छोटा है (संबंध के साथ ) पर संबंध  के रूप में एक ही रिफ्लेक्टिव क्लोजर है  यह बराबर है  की अकाट्य कर्नेल  एक अर्थ में, एक निर्माण के रूप में देखा जा सकता है जो कि रिफ्लेक्टिव क्लोजर के विपरीत है  उदाहरण के लिए, कैनोनिकल सख्त असमानता का रिफ्लेक्टिव क्लोजर  वास्तविक संख्या पर  सामान्य गैर-सख्ती असमानता है  जबकि रिफ्लेक्टिव कमी  है  

संबंधित परिभाषाएँ

प्रतिवर्ती गुण से संबंधित अनेक परिभाषाएँ हैं। सम्बन्ध कहा जाता है:

अकाट्य,एंटी-रिफ्लेक्सिव या अन्योन्याश्रित[3]
यदि यह किसी भी तत्व को अपने आप से संबंधित नहीं करता है, तो प्रत्येक के लिए नहीं है। एक संबंध अपरिवर्तनीय है यदि और केवल अगर में इसका पूरक प्रतिवर्ती है। एक असममित संबंध आवश्यक रूप से अपरिवर्तनीय है। एक सकर्मक और अप्रतिवर्ती संबंध आवश्यक रूप से असममित होता है।
वाम अर्ध-प्रतिवर्त
यदि जब भी ऐसा हो कि तो अनिवार्य रूप से होगा।[4]
दाँयाँ अर्ध-प्रतिवर्त
यदि जब भी ऐसा हो कि तो अनिवार्य रूप से होगा।
अर्ध-प्रतिवर्त
यदि हर तत्व जो कुछ संबंध का हिस्सा है, तो वह स्वयं से संबंधित है। स्पष्ट रूप से, इसका अर्थ यह है कि जब भी ऐसा होता है कि तो अनिवार्य रूप से and होता है। समतुल्य रूप से, एक द्विआधारी संबंध अर्ध-प्रतिवर्त है यदि और केवल यदि यह दोनों अर्ध-प्रतिवर्त और दायां अर्ध-प्रतिवर्त है। एक संबंध अर्ध-प्रतिवर्ती है यदि और केवल यदि इसका सममित संवरण बाएं (या दाएं) अर्ध-प्रतिवर्ती है।

प्रतिसममित संबंध:

यदि जब भी ऐसा हो कि तो अनिवार्य रूप से होगा।


सहप्रतिवर्ती: यदि जब भी ऐसा हो कि तो अनिवार्य रूप से [5]होगा। एक संबंध सहप्रतिवर्ती है अगर और केवल अगर इसकी सममित बंद विरोधी-सममित है।

एक अरिक्त समूह पर एक रिफ्लेक्सिव संबंध न तो अपरिवर्तनीय हो सकता है, और न ही असममित ( को असममित कहा जाता है यदि का तात्पर्य नहीं है ), और न ही प्रतिसंक्रमणीय ( प्रतिसंक्रमणीय है यदि का अर्थ नहीं है )।

उदाहरण

रिफ्लेक्सिव संबंधों के उदाहरणों में सम्मिलित हैं:

  • के बराबर है (समानता (गणित))
  • का एक उपसमुच्चय है (समूह समावेशन)
  • विभाजन (विभाजक)
  • से अधिक या बराबर है
  • से कम या उसके बराबर है

अकाट्य संबंधों के उदाहरणों में सम्मिलित हैं::

  • के बराबर नहीं है
  • 1 से बड़े पूर्णांक पर कॉपीरीट है
  • का उचित उपसमुच्चय है
  • से बड़ा है
  • से छोटा है

एक अकाट्य संबंध का एक उदाहरण, जिसका अर्थ है कि यह किसी भी तत्व से संबंधित नहीं है, संबंध से अधिक है () वास्तविक संख्या पर।हर संबंध जो रिफ्लेक्टिव नहीं है वह अकाट्य नहीं है;उन संबंधों को परिभाषित करना संभव है जहां कुछ तत्व स्वयं से संबंधित हैं, लेकिन अन्य नहीं हैं (यानी, न तो सभी और न ही कोई नहीं हैं)।उदाहरण के लिए, द्विआधारी संबंध के उत्पाद और यहां तक कि सम संख्याओं के सेट पर भी रिफ्लेक्टिव है, विषम संख्याओं के सेट पर अकाट्य, और न तो रिफ्लेक्टिव और न ही प्राकृतिक संख्याओं के सेट पर अकाट्य है।

एक अर्ध-विद्रोही संबंध का एक उदाहरण वास्तविक संख्याओं के अनुक्रमों के सेट पर एक ही सीमा है: प्रत्येक अनुक्रम में एक सीमा नहीं है, और इस प्रकार संबंध प्रतिवर्त नहीं है, लेकिन यदि किसी अनुक्रम में कुछ अनुक्रम के समान सीमा है, तो इसकी सीमा ही है।। एक बाएं अर्ध-पुनर्विचार संबंध का एक उदाहरण एक बाएं यूक्लिडियन संबंध है, जो हमेशा क्वासी-रिफ्लेक्सिव को छोड़ दिया जाता है, लेकिन जरूरी नहीं कि सही अर्ध-पुनर्विचार, और इस प्रकार जरूरी नहीं कि अर्ध-रिफ्लेक्सिव हो।

एक कोरफ्लेक्स संबंध का एक उदाहरण पूर्णांक पर संबंध है जिसमें प्रत्येक विषम संख्या स्वयं से संबंधित है और कोई अन्य संबंध नहीं हैं।समानता संबंध एक रिफ्लेक्टिव और कोरफ्लेक्सिव संबंध दोनों का एकमात्र उदाहरण है, और कोई भी कोरफ्लेक्सिव रिलेशन आइडेंटिटी रिलेशन का एक सबसेट है।एक कोरफ्लेक्स संबंध का मिलन और एक ही सेट पर एक सकर्मक संबंध हमेशा सकर्मक होता है।

रिफ्लेक्टिव संबंधों की संख्या

एक -तत्व समुच्चय पर स्वतुल्य संबंधों की संख्या है [6]

Number of n-element binary relations of different types
Elem­ents Any Transitive Reflexive Symmetric Preorder Partial order Total preorder Total order Equivalence relation
0 1 1 1 1 1 1 1 1 1
1 2 2 1 2 1 1 1 1 1
2 16 13 4 8 4 3 3 2 2
3 512 171 64 64 29 19 13 6 5
4 65,536 3,994 4,096 1,024 355 219 75 24 15
n 2n2 2n2n 2n(n+1)/2 n!
OEIS A002416 A006905 A053763 A006125 A000798 A001035 A000670 A000142 A000110

Note that S(n, k) refers to Stirling numbers of the second kind.


दार्शनिक तर्क

प्रायः दार्शनिक तर्कशास्त्र के लेखक विभिन्न शब्दावली का प्रयोग करते हैं। गणितीय अर्थ में बाध्य संबंधों को दार्शनिक तर्क में पूरी तरह से रिफ्लेक्सिव कहा जाता है, और अर्ध-बाध्य संबंधों को रिफ्लेक्सिव कहा जाता है।[7][8]


टिप्पणियाँ

  1. Levy 1979:74
  2. Relational Mathematics, 2010
  3. This term is due to C S Peirce, see Bertrand Russell (Apr 1920). Introduction to Mathematical Philosophy (PDF) (2nd ed.). London: George Allen & Unwin, Ltd. (Online corrected edition, Feb 2010). Here: p. 32. Russel also introduces two equivalent terms to be contained in or imply diversity.
  4. The Encyclopedia Britannica calls this property quasi-reflexivity.
  5. Fonseca de Oliveira, J. N., & Pereira Cunha Rodrigues, C. D. J. (2004). Transposing Relations: From Maybe Functions to Hash Tables. In Mathematics of Program Construction (p. 337).
  6. On-Line Encyclopedia of Integer Sequences A053763
  7. Alan Hausman; Howard Kahane; Paul Tidman (2013). Logic and Philosophy — A Modern Introduction. Wadsworth. ISBN 1-133-05000-X. Here: p.327-328
  8. D.S. Clarke; Richard Behling (1998). Deductive Logic — An Introduction to Evaluation Techniques and Logical Theory. University Press of America. ISBN 0-7618-0922-8. Here: p.187


संदर्भ


बाहरी कड़ियाँ