स्थिर प्रक्रिया: Difference between revisions
(Created page with "{{Short description|Type of stochastic process}} गणित और आंकड़ों में, एक स्थिर प्रक्रिया (या एक सख...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Type of stochastic process}} | {{Short description|Type of stochastic process}} | ||
गणित और आंकड़ों में, | गणित और आंकड़ों में, स्थिर प्रक्रिया (या सख्त/सख्ती से स्थिर प्रक्रिया या शक्तिशाली /दृढ़ता से स्थिर प्रक्रिया) [[अनेक संभावनाओं में से चुनी हूई प्रक्रिया]] है जिसका बिना शर्त [[संयुक्त संभावना वितरण]] समय में स्थानांतरित होने पर नहीं बदलता है।<ref>{{Cite book|title=Markov Chains: From Theory to Implementation and Experimentation|last=Gagniuc|first=Paul A.|publisher=John Wiley & Sons|year=2017|isbn=978-1-119-38755-8|location=USA, NJ|pages=1–256}}</ref> परिणाम स्वरुप , माध्य और विचरण जैसे पैरामीटर भी समय के साथ नहीं बदलते हैं।यदि आप स्थिर प्रक्रिया के बीच से एक रेखा खींचते हैं तो यह सपाट होना चाहिए; इसमें 'मौसमी' चक्र हो सकते हैं, किन्तु कुल मिलाकर यह ऊपर या नीचे नहीं चल रहा है। | ||
चूंकि | चूंकि स्थिरता एक धारणा है जो [[समय श्रृंखला विश्लेषण]] में उपयोग की जाने वाली कई सांख्यिकीय प्रक्रियाओं को अंतर्निहित करती है, गैर-स्थिर डेटा अधिकांशतः स्थिर होने के लिए रूपांतरित हो जाते हैं।स्थिरता के उल्लंघन का सबसे आम कारण इस माध्य में प्रवृत्ति है, जो या तो एक इकाई जड़ की उपस्थिति या नियतात्मक प्रवृत्ति की उपस्थिति के कारण हो सकता है।एक [[एकक जड़]] के पूर्व मामले में, स्टोकेस्टिक झटके के स्थायी प्रभाव होते हैं, और प्रक्रिया का [[मतलब प्रत्यावर्तन (वित्त)|कारण प्रत्यावर्तन (वित्त)]] नहीं है। माध्य-पुनरावृत्ति।एक नियतात्मक प्रवृत्ति के बाद के मामले में, प्रक्रिया को प्रवृत्ति-स्थिरता प्रक्रिया कहा जाता है, और स्टोकेस्टिक झटकों में केवल क्षणभंगुर प्रभाव होता है, जिसके बाद चर नियतात्मक रूप से विकसित (गैर-समर्पण) माध्य की ओर जाता है। | ||
एक प्रवृत्ति स्थिर प्रक्रिया कड़ाई से स्थिर नहीं है, | एक प्रवृत्ति स्थिर प्रक्रिया कड़ाई से स्थिर नहीं है, किन्तु आसानी से अंतर्निहित प्रवृत्ति को हटाकर स्थिर प्रक्रिया में तब्दील हो सकती है, जो पूरी तरह से समय का कार्य है।इसी तरह, एक या एक से अधिक इकाई जड़ों वाली प्रक्रियाओं को अलग -अलग के माध्यम से स्थिर बनाया जा सकता है।एक महत्वपूर्ण प्रकार की गैर-स्थिर प्रक्रिया जिसमें प्रवृत्ति की तरह व्यवहार सम्मिलित नहीं है, चक्रवात प्रक्रिया है, जो स्टोकेस्टिक प्रक्रिया है जो समय के साथ चक्रीय रूप से भिन्न होती है। | ||
कई अनुप्रयोगों के लिए सख्त-भावना स्थिरता बहुत प्रतिबंधात्मक है।स्थिरता के अन्य रूपों जैसे कि व्यापक- | कई अनुप्रयोगों के लिए सख्त-भावना स्थिरता बहुत प्रतिबंधात्मक है।स्थिरता के अन्य रूपों जैसे कि व्यापक-तात्पर्य स्थिरता या ''n ''-Th-order स्थिरता तब कार्यरत हैं।विभिन्न प्रकार की स्थिरता के लिए परिभाषाएं विभिन्न लेखकों के बीच सुसंगत नहीं हैं (देखें स्थिर प्रक्रिया#अन्य शब्दावली)। | ||
== सख्त-भावना स्थिरता == | == सख्त-भावना स्थिरता == | ||
Line 12: | Line 12: | ||
=== परिभाषा === | === परिभाषा === | ||
औपचारिक रूप से, चलो <math>\left\{X_t\right\}</math> | औपचारिक रूप से, चलो <math>\left\{X_t\right\}</math> स्टोकेस्टिक प्रक्रिया हो और चलो <math>F_{X}(x_{t_1 + \tau}, \ldots, x_{t_n + \tau})</math> [[सीमांत वितरण]] के संचयी वितरण फलन का प्रतिनिधित्व करें (अर्थात, किसी विशेष प्रारंभिक मूल्य के संदर्भ में नहीं) [[संयुक्त वितरण]] <math>\left\{X_t\right\}</math> कभी कभी <math>t_1 + \tau, \ldots, t_n + \tau</math>।फिर, <math>\left\{X_t\right\}</math> कहा जाता है कि सख्ती से स्थिर, दृढ़ता से स्थिर या सख्त-तात्पर्य स्थिर<ref name=KunIlPark>{{cite book | author=Park,Kun Il| title=Fundamentals of Probability and Stochastic Processes with Applications to Communications| publisher=Springer | year=2018 | isbn=978-3-319-68074-3}}</ref>{{rp|p. 155}} | ||
{{Equation box 1 | {{Equation box 1 | ||
Line 26: | Line 26: | ||
=== उदाहरण === | === उदाहरण === | ||
[[File:Stationarycomparison.png|thumb|right|390px|दो सिम्युलेटेड टाइम सीरीज़ प्रक्रियाएं, एक स्थिर और दूसरी गैर-स्थिर, ऊपर दिखाए गए हैं।संवर्धित डिके-फुलर टेस्ट | संवर्धित डिके-फुलर (एडीएफ) परीक्षण सांख्यिकीय प्रत्येक प्रक्रिया के लिए सूचित किया जाता है;गैर-स्थिरता को 5% महत्व स्तर पर दूसरी प्रक्रिया के लिए अस्वीकार नहीं किया जा सकता है।]]सफेद | [[File:Stationarycomparison.png|thumb|right|390px|दो सिम्युलेटेड टाइम सीरीज़ प्रक्रियाएं, एक स्थिर और दूसरी गैर-स्थिर, ऊपर दिखाए गए हैं।संवर्धित डिके-फुलर टेस्ट | संवर्धित डिके-फुलर (एडीएफ) परीक्षण सांख्यिकीय प्रत्येक प्रक्रिया के लिए सूचित किया जाता है;गैर-स्थिरता को 5% महत्व स्तर पर दूसरी प्रक्रिया के लिए अस्वीकार नहीं किया जा सकता है।]]सफेद ध्वनि स्थिर प्रक्रिया का सबसे सरल उदाहरण है। | ||
एक [[असतत-समय स्टोकेस्टिक प्रक्रिया]] का | एक [[असतत-समय स्टोकेस्टिक प्रक्रिया]] का उदाहरण | असतत-समय स्थिर प्रक्रिया जहां नमूना स्थान भी असतत है (जिससे यादृच्छिक चर एन संभावित मानों में से एक हो सकता है) [[बर्नौली योजना]] है।निरंतर नमूना स्थान के साथ असतत-समय स्थिर प्रक्रिया के अन्य उदाहरणों में कुछ [[स्वैच्छिक]] और [[चलती औसत मॉडल]] प्रक्रियाएं सम्मिलित हैं जो दोनों [[स्वत: संप्रायता औसत मॉडल]] के सबसमूह हैं।एक गैर-तुच्छ ऑटोरेग्रेसिव घटक वाले मॉडल या तो स्थिर या गैर-स्थिर हो सकते हैं, जो पैरामीटर मानों के आधार पर, और महत्वपूर्ण गैर-स्थिरता विशेष मामले हैं जहां मॉडल में यूनिट की जड़ें उपस्थित हैं। | ||
==== उदाहरण 1 ==== | ==== उदाहरण 1 ==== | ||
होने देना <math>Y</math> किसी भी स्केलर यादृच्छिक चर बनें, और | होने देना <math>Y</math> किसी भी स्केलर यादृच्छिक चर बनें, और समय-श्रृंखला को परिभाषित करें <math>\left\{X_t\right\}</math>, द्वारा | ||
:<math>X_t=Y \qquad \text{ for all } t.</math> | :<math>X_t=Y \qquad \text{ for all } t.</math> | ||
फिर <math>\left\{X_t\right\}</math> | फिर <math>\left\{X_t\right\}</math> स्थिर समय श्रृंखला है, जिसके लिए अहसासों में निरंतर मूल्यों की श्रृंखला सम्मिलित है, प्रत्येक प्राप्ति के लिए अलग निरंतर मूल्य के साथ।इस मामले पर बड़ी संख्या का नियम प्रयुक्त नहीं होता है, क्योंकि एक ही अहसास से औसत का सीमित मूल्य यादृच्छिक मूल्य को निर्धारित करता है <math>Y</math>, के [[अपेक्षित मूल्य]] लेने के अतिरिक्त <math>Y</math>। | ||
का समय औसत <math>X_t</math> प्रक्रिया नहीं है क्योंकि प्रक्रिया [[एर्गोडिक प्रक्रिया]] नहीं है। | का समय औसत <math>X_t</math> प्रक्रिया नहीं है क्योंकि प्रक्रिया [[एर्गोडिक प्रक्रिया]] नहीं है। | ||
==== उदाहरण 2 ==== | ==== उदाहरण 2 ==== | ||
एक स्थिर प्रक्रिया के | एक स्थिर प्रक्रिया के उदाहरण के रूप में जिसके लिए किसी भी एकल अहसास में स्पष्ट रूप से ध्वनि-मुक्त संरचना होती है, चलो <math>Y</math> [[समान वितरण]] (निरंतर) है <math>(0,2\pi]</math> और समय श्रृंखला को परिभाषित करें <math>\left\{X_t\right\}</math> द्वारा | ||
:<math>X_t=\cos (t+Y) \quad \text{ for } t \in \mathbb{R}. </math> | :<math>X_t=\cos (t+Y) \quad \text{ for } t \in \mathbb{R}. </math> | ||
तब <math>\left\{X_t\right\}</math> तब से कड़ाई से स्थिर है (<math> (t+ Y) </math> सापेक्ष <math> 2 \pi </math>) एक ही समान वितरण के रूप में अनुसरण करता है <math> Y </math> किसी के लिए <math> t </math>। | तब <math>\left\{X_t\right\}</math> तब से कड़ाई से स्थिर है (<math> (t+ Y) </math> सापेक्ष <math> 2 \pi </math>) एक ही समान वितरण के रूप में अनुसरण करता है <math> Y </math> किसी के लिए <math> t </math>। | ||
==== उदाहरण 3 ==== | ==== उदाहरण 3 ==== | ||
ध्यान रखें कि | ध्यान रखें कि सफेद ध्वनि आवश्यक सख्ती से स्थिर नहीं है।होने देना <math>\omega</math> अंतराल में समान रूप से वितरित यादृच्छिक चर बनें <math>(0, 2\pi)</math> और समय श्रृंखला को परिभाषित करें <math>\left\{z_t\right\}</math> | ||
<math>z_t=\cos(t\omega) \quad (t=1,2,...) </math> | <math>z_t=\cos(t\omega) \quad (t=1,2,...) </math> | ||
Line 54: | Line 54: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
इसलिए <math>\{z_t\}</math> | इसलिए <math>\{z_t\}</math> सफेद ध्वनि है, चूंकि यह सख्ती से स्थिर नहीं है। | ||
में {{EquationNote|Eq.1}}का वितरण <math>n</math> स्टोकेस्टिक प्रक्रिया के नमूने सभी के लिए समय में स्थानांतरित किए गए नमूनों के वितरण के बराबर होना चाहिए <math>n</math>।एन- | == Nवें क्रम की स्थिरता == | ||
में {{EquationNote|Eq.1}}का वितरण <math>n</math> स्टोकेस्टिक प्रक्रिया के नमूने सभी के लिए समय में स्थानांतरित किए गए नमूनों के वितरण के बराबर होना चाहिए <math>n</math>।एन-वें क्रम की स्थिरता, स्थिरता का एक कमजोर रूप है जहां यह केवल सभी के लिए अनुरोध किया जाता है <math>n</math> एक निश्चित आदेश तक <math>N</math>।एक यादृच्छिक प्रक्रिया <math>\left\{X_t\right\}</math> कहा जाता है कि n -वाँ क्रम स्थिर है:<ref name=KunIlPark/>{{rp|p. 152}} | |||
{{Equation box 1 | {{Equation box 1 | ||
Line 71: | Line 71: | ||
| पृष्ठभूमि रंग =#f5fffa}} | | पृष्ठभूमि रंग =#f5fffa}} | ||
== कमजोर या | == कमजोर या व्यापक अर्थ वाली स्थिरता == | ||
=== परिभाषा === | |||
=== | [[संकेत आगे बढ़ाना|संकेत आगे बढ़ाने]] में सामान्यतः नियोजित स्थिरता का कमजोर रूप कमजोर-तात्पर्य स्थिरता, व्यापक-अर्थ स्थिरता (डब्ल्यूएसएस), या सहसंयोजक स्थिरता के रूप में जाना जाता है।डब्ल्यूएसएस यादृच्छिक प्रक्रियाओं को केवल यह आवश्यक है कि 1 [[क्षण (गणित)]] (अर्थात माध्य) और [[स्वत:]] समय के संबंध में भिन्न नहीं होते हैं और यह कि दूसरा क्षण सभी समय के लिए परिमित है।कोई भी सख्ती से स्थिर प्रक्रिया जिसका परिमित माध्य है और सहसंयोजक भी डब्ल्यूएसएस है।<ref name="Florescu2014">{{cite book|author=Ionut Florescu|title=Probability and Stochastic Processes|date=7 November 2014|publisher=John Wiley & Sons|isbn=978-1-118-59320-2}}</ref>{{rp|p. 299}} | ||
तो, [[निरंतर समय]] [[यादृच्छिक प्रक्रिया]] <math>\left\{X_t\right\}</math> जो डब्ल्यूएसएस है उसके औसत कार्य पर निम्नलिखित प्रतिबंध हैं <math>m_X(t) \triangleq \operatorname E[X_t]</math> और ऑटोकोवेरियन फंक्शन <math>K_{XX}(t_1, t_2) \triangleq \operatorname E[(X_{t_1}-m_X(t_1))(X_{t_2}-m_X(t_2))]</math>: | |||
तो, | |||
{{Equation box 1 | {{Equation box 1 | ||
Line 94: | Line 93: | ||
| पृष्ठभूमि रंग =#f5fffa}} | | पृष्ठभूमि रंग =#f5fffa}} | ||
पहले गुण का अर्थ यह है कि माध्य फलन <math>m_X(t)</math> स्थिर होना चाहिए।दूसरी गुण का तात्पर्य यह है कि ऑटोकोवेरियन फलन केवल अंतर पर निर्भर करता है <math>t_1</math> और <math>t_2</math> और केवल दो चर के अतिरिक्त चर द्वारा अनुक्रमित होने की आवश्यकता है।<ref name="KunIlPark" />{{rp|p. 159}} इस प्रकार, लिखने के अतिरिक्त, | |||
:<math>\,\!K_{XX}(t_1 - t_2, 0)\,</math> | :<math>\,\!K_{XX}(t_1 - t_2, 0)\,</math> | ||
संकेतन | संकेतन अधिकांशतः प्रतिस्थापन द्वारा संक्षिप्त किया जाता है <math>\tau = t_1 - t_2</math>: | ||
:<math>K_{XX}(\tau) \triangleq K_{XX}(t_1 - t_2, 0)</math> | :<math>K_{XX}(\tau) \triangleq K_{XX}(t_1 - t_2, 0)</math> | ||
Line 103: | Line 102: | ||
:<math>\,\! R_X(t_1,t_2) = R_X(t_1-t_2,0) \triangleq R_X(\tau).</math> | :<math>\,\! R_X(t_1,t_2) = R_X(t_1-t_2,0) \triangleq R_X(\tau).</math> | ||
तीसरी | तीसरी गुण का कहना है कि दूसरे क्षण किसी भी समय के लिए परिमित होना चाहिए <math>t</math>। | ||
=== प्रेरणा === | === प्रेरणा === | ||
व्यापक-सेंस स्थिरता का मुख्य लाभ यह है कि यह हिल्बर्ट रिक्त स्थान के संदर्भ में समय-श्रृंखला रखता है।चलो {x (t)} द्वारा उत्पन्न | व्यापक-सेंस स्थिरता का मुख्य लाभ यह है कि यह हिल्बर्ट रिक्त स्थान के संदर्भ में समय-श्रृंखला रखता है।चलो {x (t)} द्वारा उत्पन्न हिल्बर्ट अंतरिक्ष होना चाहिए (अर्थात, दिए गए प्रायिकता स्थान पर सभी वर्ग-इंटीग्रेबल रैंडम वैरिएबल के [[हिल्बर्ट स्पेस]] में इन यादृच्छिक चर के सभी रैखिक संयोजनों के समूह को बंद करना)।ऑटोकोवेरियन फलन की सकारात्मक निश्चितता के द्वारा, यह बोचनेर के प्रमेय से अनुसरण करता है कि सकारात्मक माप उपस्थित है <math>\mu</math> वास्तविक रेखा पर ऐसा है कि ''H, {e<sup>−2πiξ⋅t</sup>} द्वारा उत्पन्न L''<sup>2</sup>(''μ'') के हिल्बर्ट उपस्थान के लिए समरूप है इसके बाद निरंतर समय स्थिर स्टोकेस्टिक प्रक्रिया के लिए निम्नलिखित फूरियर-प्रकार का अपघटन देता है: स्टोकेस्टिक प्रक्रिया उपस्थित है <math>\omega_\xi</math> [[ऑर्थोगोनल वृद्धि]] के साथ, जैसे कि, सभी के लिए <math>t</math>. | ||
:<math>X_t = \int e^{- 2 \pi i \lambda \cdot t} \, d \omega_\lambda,</math> | :<math>X_t = \int e^{- 2 \pi i \lambda \cdot t} \, d \omega_\lambda,</math> | ||
जहां दाहिने हाथ की ओर अभिन्न | जहां दाहिने हाथ की ओर अभिन्न उपयुक्त (रीमैन) अर्थ में व्याख्या की जाती है।एक ही परिणाम असतत-समय स्थिर प्रक्रिया के लिए होता है, जिसमें स्पेक्ट्रल माप अब यूनिट सर्कल पर परिभाषित किया गया है। | ||
डब्ल्यूएसएस को रैखिक, समय-अपरिवर्तनीय ([[LTI तंत्र सिद्धांत|एलटीआई तंत्र सिद्धांत]]) [[फ़िल्टर]] (सिग्नल प्रोसेसिंग) के साथ यादृच्छिक संकेतों का प्रसंस्करण करते समय, यह रैखिक ऑपरेटर के रूप में सहसंबंध फलन के बारे में सोचने में सहायक है।चूंकि यह परिसंचारी मैट्रिक्स ऑपरेटर है (केवल दो तर्कों के बीच अंतर पर निर्भर करता है), इसके [[eigenfunction|ईगेनफ़ंक्शन]] [[फोरियर श्रेणी]] कॉम्प्लेक्स [[घातांक प्रकार्य]] अतिरिक्त, चूंकि एलटीआई ऑपरेटरों के ईगेनफ़ंक्शन भी घातीय कार्य हैं, डब्ल्यूएसएस यादृच्छिक संकेतों का एलटीआई प्रसंस्करण अत्यधिक ट्रैक्टेबल है - सभी संगणना [[आवृत्ति डोमेन]] में किए जा सकते हैं।इस प्रकार, डब्ल्यूएसएस धारणा को सिग्नल प्रोसेसिंग [[कलन विधि]] में व्यापक रूप से नियोजित किया जाता है। | |||
=== जटिल स्टोकेस्टिक प्रक्रिया के लिए परिभाषा === | === जटिल स्टोकेस्टिक प्रक्रिया के लिए परिभाषा === | ||
मामले में जहां <math>\left\{X_t\right\}</math> | मामले में जहां <math>\left\{X_t\right\}</math> जटिल स्टोकेस्टिक प्रक्रिया है जिसे ऑटोकोवेरियन फलन के रूप में परिभाषित किया गया है <math>K_{XX}(t_1, t_2) = \operatorname E[(X_{t_1}-m_X(t_1))\overline{(X_{t_2}-m_X(t_2))}]</math> और, आवश्यकताओं के अतिरिक्त {{EquationNote|Eq.3}}, यह आवश्यक है कि छद्म-ऑटोकोवेरियन फलन <math>J_{XX}(t_1, t_2) = \operatorname E[(X_{t_1}-m_X(t_1))(X_{t_2}-m_X(t_2))]</math> केवल समय अंतराल पर निर्भर करता है।सूत्रों में, <math>\left\{X_t\right\}</math> डब्ल्यूएसएस है, यदि | ||
{{Equation box 1 | {{Equation box 1 | ||
Line 131: | Line 131: | ||
| पृष्ठभूमि रंग =#f5fffa}} | | पृष्ठभूमि रंग =#f5fffa}} | ||
== संयुक्त | == संयुक्त स्थिरता == | ||
स्थिरता की अवधारणा को दो स्टोकेस्टिक प्रक्रियाओं तक बढ़ाया जा सकता है। | स्थिरता की अवधारणा को दो स्टोकेस्टिक प्रक्रियाओं तक बढ़ाया जा सकता है। | ||
=== संयुक्त सख्त- | === संयुक्त सख्त-तात्पर्य स्थिरता === | ||
दो स्टोकेस्टिक प्रक्रियाएं <math>\left\{X_t\right\}</math> और <math>\left\{Y_t\right\}</math> यदि उनके संयुक्त संचयी वितरण को संयुक्त रूप से सख्त- | यदि दो स्टोकेस्टिक प्रक्रियाएं <math>\left\{X_t\right\}</math> और <math>\left\{Y_t\right\}</math> यदि उनके संयुक्त संचयी वितरण को संयुक्त रूप से सख्त-तात्पर्य स्थिर कहा जाता है <math>F_{XY}(x_{t_1} ,\ldots, x_{t_m},y_{t_1^'} ,\ldots, y_{t_n^'})</math> समय बदलाव के अनुसार अपरिवर्तित रहता है, | ||
{{Equation box 1 | {{Equation box 1 | ||
Line 148: | Line 148: | ||
| पृष्ठभूमि रंग =#f5fffa}} | | पृष्ठभूमि रंग =#f5fffa}} | ||
=== संयुक्त (m + n) th- | === संयुक्त (m + n) th-क्रम स्थिरता === | ||
दो यादृच्छिक प्रक्रियाएं <math>\left\{X_t\right\}</math> और <math>\left\{Y_t\right\}</math> कहा जाता है कि संयुक्त रूप से ('' | यदि दो यादृच्छिक प्रक्रियाएं <math>\left\{X_t\right\}</math> और <math>\left\{Y_t\right\}</math> कहा जाता है कि संयुक्त रूप से '''(''M'' + ''N'') वें क्रम स्थिर कहा जाता है''' ;<ref name=KunIlPark/>{{rp|p. 159}} | ||
{{Equation box 1 | {{Equation box 1 | ||
Line 162: | Line 162: | ||
| पृष्ठभूमि रंग =#f5fffa}} | | पृष्ठभूमि रंग =#f5fffa}} | ||
=== संयुक्त कमजोर या व्यापक- | === संयुक्त कमजोर या व्यापक-तात्पर्य स्थिरता === | ||
दो स्टोकेस्टिक प्रक्रियाएं <math>\left\{X_t\right\}</math> और <math>\left\{Y_t\right\}</math> यदि वे दोनों व्यापक-सेंस स्थिर और उनके क्रॉस-कोवरियन | यदि दो स्टोकेस्टिक प्रक्रियाएं <math>\left\{X_t\right\}</math> और <math>\left\{Y_t\right\}</math> यदि वे दोनों व्यापक-सेंस स्थिर और उनके क्रॉस-कोवरियन फलन हैं <math>K_{XY}(t_1, t_2) = \operatorname E[(X_{t_1}-m_X(t_1))(Y_{t_2}-m_Y(t_2))]</math> केवल समय के अंतर पर निर्भर करता है <math>\tau = t_1 - t_2</math>।इसे इस प्रकार संक्षेपित किया जा सकता है: | ||
{{Equation box 1 | {{Equation box 1 | ||
Line 183: | Line 183: | ||
== स्थिरता के प्रकारों के बीच संबंध == | == स्थिरता के प्रकारों के बीच संबंध == | ||
* यदि | * यदि स्टोकेस्टिक प्रक्रिया ''N''-th-क्रम स्थिरता है, तो यह सभी के लिए ''M''-th-क्रम स्थिरता भी है {{tmath|M \le N}}। | ||
* यदि | * यदि स्टोकेस्टिक प्रक्रिया दूसरा क्रम स्थिर है (<math>N=2</math>) और परिमित दूसरे क्षण हैं, फिर यह व्यापक-तात्पर्य स्थिर भी है।<ref name=KunIlPark/>{{rp|p. 159}} | ||
* यदि | * यदि स्टोकेस्टिक प्रक्रिया व्यापक-तात्पर्य स्थिर है, तो यह आवश्यक नहीं कि दूसरा क्रम स्थिर हो।<ref name=KunIlPark/>{{rp|p. 159}} | ||
* यदि | * यदि स्टोकेस्टिक प्रक्रिया सख्त-तात्पर्य स्थिर है और इसमें दूसरे क्षणों को परिमित किया जाता है, तो यह व्यापक-तात्पर्य स्थिर है।<ref name="Florescu2014"/>{{rp|p. 299}} | ||
* यदि दो स्टोकेस्टिक प्रक्रियाएं संयुक्त रूप से हैं | * यदि दो स्टोकेस्टिक प्रक्रियाएं संयुक्त रूप से (M + N)-th-क्रम स्थिर हैं, तो यह गारंटी नहीं देता है कि व्यक्तिगत प्रक्रियाएं M-th- क्रमशः N-th-क्रम स्थिर हैं<ref name=KunIlPark/>{{rp|p. 159}} | ||
== अन्य शब्दावली == | == अन्य शब्दावली == | ||
सख्त स्थिरता के | सख्त स्थिरता के अतिरिक्त अन्य प्रकार के स्थिरता के लिए उपयोग की जाने वाली शब्दावली को मिश्रित किया जा सकता है।कुछ उदाहरणों का अनुसरण करते हैं। | ||
*[[मौरिस प्रीस्टले]] '' | *[[मौरिस प्रीस्टले]] ''m'' को क्रम करने के लिए स्थिरता अप का उपयोग करता है, यदि व्यापक अर्थों के लिए यहां दी गई शर्तों के समान स्थितियां ''m'' क्रम करने के लिए क्षणों से संबंधित प्रयुक्त होती हैं।<ref>{{cite book |last=Priestley |first=M. B. |year=1981 |title=Spectral Analysis and Time Series |publisher=Academic Press |isbn=0-12-564922-3 }}</ref><ref>{{cite book |last=Priestley |first=M. B. |year=1988 |title=Non-linear and Non-stationary Time Series Analysis |url=https://archive.org/details/nonlinearnonstat0000prie |url-access=registration |publisher=Academic Press |isbn=0-12-564911-8 }}</ref> इस प्रकार व्यापक अर्थ स्थिरता क्रम 2 के लिए स्थिरता के बराबर होगी, जो यहां दी गई दूसरी-क्रम स्थिरता की परिभाषा से अलग है। | ||
* [[मेहरदाद होनर्कह]] और [[जेफ कैर्स]] भी कई-पॉइंट जियोस्टैटिस्टिक्स के संदर्भ में स्थिरता की धारणा का उपयोग करते हैं, जहां उच्च एन-पॉइंट आँकड़ों को स्थानिक डोमेन में स्थिर माना जाता है।<ref>{{cite journal |last=Honarkhah |first=M. |last2=Caers |first2=J. |year=2010 |doi=10.1007/s11004-010-9276-7 |title=Stochastic Simulation of Patterns Using Distance-Based Pattern Modeling |journal=Mathematical Geosciences |volume=42 |issue=5 |pages=487–517 }}</ref> | * [[मेहरदाद होनर्कह]] और [[जेफ कैर्स]] भी कई-पॉइंट जियोस्टैटिस्टिक्स के संदर्भ में स्थिरता की धारणा का उपयोग करते हैं, जहां उच्च एन-पॉइंट आँकड़ों को स्थानिक डोमेन में स्थिर माना जाता है।<ref>{{cite journal |last=Honarkhah |first=M. |last2=Caers |first2=J. |year=2010 |doi=10.1007/s11004-010-9276-7 |title=Stochastic Simulation of Patterns Using Distance-Based Pattern Modeling |journal=Mathematical Geosciences |volume=42 |issue=5 |pages=487–517 }}</ref> | ||
* [[Pejman Tahmasebi]] और [[Muhammad Sahimi]] ने | * [[Pejman Tahmasebi|पेजमन तहमासेबी]] और [[Muhammad Sahimi|मुहम्मद साहिमी]] ने अनुकूली शैनन-आधारित कार्यप्रणाली प्रस्तुत की है जिसका उपयोग किसी भी गैर-स्थिर प्रणालियों के प्रतिरूपण के लिए किया जा सकता है।<ref>{{cite journal |last=Tahmasebi |first=P. |last2=Sahimi |first2=M. |year=2015 |doi=10.1103/PhysRevE.91.032401 |title=Reconstruction of nonstationary disordered materials and media: Watershed transform and cross-correlation function | url = http://journals.aps.org/pre/abstract/10.1103/PhysRevE.91.032401 | format = PDF |journal=Physical Review E |volume=91 |issue=3 |pmid=25871117 |page=032401|doi-access=free }}</ref> <br /> | ||
== विभेदक == | == विभेदक == | ||
कुछ समय श्रृंखला को स्थिर करने का एक | कुछ समय श्रृंखला को स्थिर करने का एक प्रणाली लगातार टिप्पणियों के बीच अंतर की गणना करना है। इसे यूनिट रूट के रूप में जाना जाता है।डिफरेंसिंग समय श्रृंखला के स्तर में परिवर्तन को हटाकर, और इसलिए रुझानों को समाप्त करके समय श्रृंखला के माध्य को स्थिर करने मेंसहायता कर सकती है।यह मौसम को भी हटा सकता है, यदि अंतर को उचित रूप से लिया जाता है (उदाहरण के लिए अलग-अलग अवलोकन 1 वर्ष के अतिरिक्त वर्ष-एलओ को हटाने के लिए)। | ||
लॉगरिथम जैसे परिवर्तन | लॉगरिथम जैसे परिवर्तन समय श्रृंखला के विचरण को स्थिर करने में सहायता कर सकते हैं। | ||
गैर-स्थिर टाइम्स श्रृंखला की पहचान करने के तरीकों में से | गैर-स्थिर टाइम्स श्रृंखला की पहचान करने के तरीकों में से ऑटोकॉरेलेशन प्लॉट है।कभी -कभी, मूल समय श्रृंखला की तुलना में एसीएफ प्लॉट में मौसमी पैटर्न अधिक दिखाई देंगे; चूंकि, यह स्थिति हमेशा नहीं होता है।<ref>{{Cite web|url=https://www.otexts.org/fpp/8/1|title=8.1 Stationarity and differencing {{!}} OTexts|website=www.otexts.org|access-date=2016-05-18}}</ref> नॉनस्थिरता टाइम सीरीज़ स्थिर दिख सकती है | ||
गैर-स्थिरता की पहचान करने के लिए एक और दृष्टिकोण | गैर-स्थिरता की पहचान करने के लिए एक और दृष्टिकोण श्रृंखला के [[लाप्लास रूपांतरण]] को देखना है, जो घातीय रुझानों और साइनसोइडल सीज़निटी (जटिल घातीय रुझानों) दोनों की पहचान करेगा।सिग्नल विश्लेषण से संबंधित विधि जैसे कि [[तरंग रूपांतरण]] और [[फूरियर रूपांतरण]] भी सहायक हो सकते हैं। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 18:44, 9 February 2023
गणित और आंकड़ों में, स्थिर प्रक्रिया (या सख्त/सख्ती से स्थिर प्रक्रिया या शक्तिशाली /दृढ़ता से स्थिर प्रक्रिया) अनेक संभावनाओं में से चुनी हूई प्रक्रिया है जिसका बिना शर्त संयुक्त संभावना वितरण समय में स्थानांतरित होने पर नहीं बदलता है।[1] परिणाम स्वरुप , माध्य और विचरण जैसे पैरामीटर भी समय के साथ नहीं बदलते हैं।यदि आप स्थिर प्रक्रिया के बीच से एक रेखा खींचते हैं तो यह सपाट होना चाहिए; इसमें 'मौसमी' चक्र हो सकते हैं, किन्तु कुल मिलाकर यह ऊपर या नीचे नहीं चल रहा है।
चूंकि स्थिरता एक धारणा है जो समय श्रृंखला विश्लेषण में उपयोग की जाने वाली कई सांख्यिकीय प्रक्रियाओं को अंतर्निहित करती है, गैर-स्थिर डेटा अधिकांशतः स्थिर होने के लिए रूपांतरित हो जाते हैं।स्थिरता के उल्लंघन का सबसे आम कारण इस माध्य में प्रवृत्ति है, जो या तो एक इकाई जड़ की उपस्थिति या नियतात्मक प्रवृत्ति की उपस्थिति के कारण हो सकता है।एक एकक जड़ के पूर्व मामले में, स्टोकेस्टिक झटके के स्थायी प्रभाव होते हैं, और प्रक्रिया का कारण प्रत्यावर्तन (वित्त) नहीं है। माध्य-पुनरावृत्ति।एक नियतात्मक प्रवृत्ति के बाद के मामले में, प्रक्रिया को प्रवृत्ति-स्थिरता प्रक्रिया कहा जाता है, और स्टोकेस्टिक झटकों में केवल क्षणभंगुर प्रभाव होता है, जिसके बाद चर नियतात्मक रूप से विकसित (गैर-समर्पण) माध्य की ओर जाता है।
एक प्रवृत्ति स्थिर प्रक्रिया कड़ाई से स्थिर नहीं है, किन्तु आसानी से अंतर्निहित प्रवृत्ति को हटाकर स्थिर प्रक्रिया में तब्दील हो सकती है, जो पूरी तरह से समय का कार्य है।इसी तरह, एक या एक से अधिक इकाई जड़ों वाली प्रक्रियाओं को अलग -अलग के माध्यम से स्थिर बनाया जा सकता है।एक महत्वपूर्ण प्रकार की गैर-स्थिर प्रक्रिया जिसमें प्रवृत्ति की तरह व्यवहार सम्मिलित नहीं है, चक्रवात प्रक्रिया है, जो स्टोकेस्टिक प्रक्रिया है जो समय के साथ चक्रीय रूप से भिन्न होती है।
कई अनुप्रयोगों के लिए सख्त-भावना स्थिरता बहुत प्रतिबंधात्मक है।स्थिरता के अन्य रूपों जैसे कि व्यापक-तात्पर्य स्थिरता या n -Th-order स्थिरता तब कार्यरत हैं।विभिन्न प्रकार की स्थिरता के लिए परिभाषाएं विभिन्न लेखकों के बीच सुसंगत नहीं हैं (देखें स्थिर प्रक्रिया#अन्य शब्दावली)।
सख्त-भावना स्थिरता
परिभाषा
औपचारिक रूप से, चलो स्टोकेस्टिक प्रक्रिया हो और चलो सीमांत वितरण के संचयी वितरण फलन का प्रतिनिधित्व करें (अर्थात, किसी विशेष प्रारंभिक मूल्य के संदर्भ में नहीं) संयुक्त वितरण कभी कभी ।फिर, कहा जाता है कि सख्ती से स्थिर, दृढ़ता से स्थिर या सख्त-तात्पर्य स्थिर[2]: p. 155
|
(Eq.1) |
तब से प्रभावित नहीं करता , समय का कार्य नहीं है।
उदाहरण
सफेद ध्वनि स्थिर प्रक्रिया का सबसे सरल उदाहरण है।
एक असतत-समय स्टोकेस्टिक प्रक्रिया का उदाहरण | असतत-समय स्थिर प्रक्रिया जहां नमूना स्थान भी असतत है (जिससे यादृच्छिक चर एन संभावित मानों में से एक हो सकता है) बर्नौली योजना है।निरंतर नमूना स्थान के साथ असतत-समय स्थिर प्रक्रिया के अन्य उदाहरणों में कुछ स्वैच्छिक और चलती औसत मॉडल प्रक्रियाएं सम्मिलित हैं जो दोनों स्वत: संप्रायता औसत मॉडल के सबसमूह हैं।एक गैर-तुच्छ ऑटोरेग्रेसिव घटक वाले मॉडल या तो स्थिर या गैर-स्थिर हो सकते हैं, जो पैरामीटर मानों के आधार पर, और महत्वपूर्ण गैर-स्थिरता विशेष मामले हैं जहां मॉडल में यूनिट की जड़ें उपस्थित हैं।
उदाहरण 1
होने देना किसी भी स्केलर यादृच्छिक चर बनें, और समय-श्रृंखला को परिभाषित करें , द्वारा
फिर स्थिर समय श्रृंखला है, जिसके लिए अहसासों में निरंतर मूल्यों की श्रृंखला सम्मिलित है, प्रत्येक प्राप्ति के लिए अलग निरंतर मूल्य के साथ।इस मामले पर बड़ी संख्या का नियम प्रयुक्त नहीं होता है, क्योंकि एक ही अहसास से औसत का सीमित मूल्य यादृच्छिक मूल्य को निर्धारित करता है , के अपेक्षित मूल्य लेने के अतिरिक्त ।
का समय औसत प्रक्रिया नहीं है क्योंकि प्रक्रिया एर्गोडिक प्रक्रिया नहीं है।
उदाहरण 2
एक स्थिर प्रक्रिया के उदाहरण के रूप में जिसके लिए किसी भी एकल अहसास में स्पष्ट रूप से ध्वनि-मुक्त संरचना होती है, चलो समान वितरण (निरंतर) है और समय श्रृंखला को परिभाषित करें द्वारा
तब तब से कड़ाई से स्थिर है ( सापेक्ष ) एक ही समान वितरण के रूप में अनुसरण करता है किसी के लिए ।
उदाहरण 3
ध्यान रखें कि सफेद ध्वनि आवश्यक सख्ती से स्थिर नहीं है।होने देना अंतराल में समान रूप से वितरित यादृच्छिक चर बनें और समय श्रृंखला को परिभाषित करें
फिर
इसलिए सफेद ध्वनि है, चूंकि यह सख्ती से स्थिर नहीं है।
Nवें क्रम की स्थिरता
में Eq.1का वितरण स्टोकेस्टिक प्रक्रिया के नमूने सभी के लिए समय में स्थानांतरित किए गए नमूनों के वितरण के बराबर होना चाहिए ।एन-वें क्रम की स्थिरता, स्थिरता का एक कमजोर रूप है जहां यह केवल सभी के लिए अनुरोध किया जाता है एक निश्चित आदेश तक ।एक यादृच्छिक प्रक्रिया कहा जाता है कि n -वाँ क्रम स्थिर है:[2]: p. 152
|
(Eq.2) |
कमजोर या व्यापक अर्थ वाली स्थिरता
परिभाषा
संकेत आगे बढ़ाने में सामान्यतः नियोजित स्थिरता का कमजोर रूप कमजोर-तात्पर्य स्थिरता, व्यापक-अर्थ स्थिरता (डब्ल्यूएसएस), या सहसंयोजक स्थिरता के रूप में जाना जाता है।डब्ल्यूएसएस यादृच्छिक प्रक्रियाओं को केवल यह आवश्यक है कि 1 क्षण (गणित) (अर्थात माध्य) और स्वत: समय के संबंध में भिन्न नहीं होते हैं और यह कि दूसरा क्षण सभी समय के लिए परिमित है।कोई भी सख्ती से स्थिर प्रक्रिया जिसका परिमित माध्य है और सहसंयोजक भी डब्ल्यूएसएस है।[3]: p. 299
तो, निरंतर समय यादृच्छिक प्रक्रिया जो डब्ल्यूएसएस है उसके औसत कार्य पर निम्नलिखित प्रतिबंध हैं और ऑटोकोवेरियन फंक्शन :
|
(Eq.3) |
पहले गुण का अर्थ यह है कि माध्य फलन स्थिर होना चाहिए।दूसरी गुण का तात्पर्य यह है कि ऑटोकोवेरियन फलन केवल अंतर पर निर्भर करता है और और केवल दो चर के अतिरिक्त चर द्वारा अनुक्रमित होने की आवश्यकता है।[2]: p. 159 इस प्रकार, लिखने के अतिरिक्त,
संकेतन अधिकांशतः प्रतिस्थापन द्वारा संक्षिप्त किया जाता है :
इसका तात्पर्य यह भी है कि ऑटो सहसंबंध केवल इस पर निर्भर करता है , वह है
तीसरी गुण का कहना है कि दूसरे क्षण किसी भी समय के लिए परिमित होना चाहिए ।
प्रेरणा
व्यापक-सेंस स्थिरता का मुख्य लाभ यह है कि यह हिल्बर्ट रिक्त स्थान के संदर्भ में समय-श्रृंखला रखता है।चलो {x (t)} द्वारा उत्पन्न हिल्बर्ट अंतरिक्ष होना चाहिए (अर्थात, दिए गए प्रायिकता स्थान पर सभी वर्ग-इंटीग्रेबल रैंडम वैरिएबल के हिल्बर्ट स्पेस में इन यादृच्छिक चर के सभी रैखिक संयोजनों के समूह को बंद करना)।ऑटोकोवेरियन फलन की सकारात्मक निश्चितता के द्वारा, यह बोचनेर के प्रमेय से अनुसरण करता है कि सकारात्मक माप उपस्थित है वास्तविक रेखा पर ऐसा है कि H, {e−2πiξ⋅t} द्वारा उत्पन्न L2(μ) के हिल्बर्ट उपस्थान के लिए समरूप है इसके बाद निरंतर समय स्थिर स्टोकेस्टिक प्रक्रिया के लिए निम्नलिखित फूरियर-प्रकार का अपघटन देता है: स्टोकेस्टिक प्रक्रिया उपस्थित है ऑर्थोगोनल वृद्धि के साथ, जैसे कि, सभी के लिए .
जहां दाहिने हाथ की ओर अभिन्न उपयुक्त (रीमैन) अर्थ में व्याख्या की जाती है।एक ही परिणाम असतत-समय स्थिर प्रक्रिया के लिए होता है, जिसमें स्पेक्ट्रल माप अब यूनिट सर्कल पर परिभाषित किया गया है।
डब्ल्यूएसएस को रैखिक, समय-अपरिवर्तनीय (एलटीआई तंत्र सिद्धांत) फ़िल्टर (सिग्नल प्रोसेसिंग) के साथ यादृच्छिक संकेतों का प्रसंस्करण करते समय, यह रैखिक ऑपरेटर के रूप में सहसंबंध फलन के बारे में सोचने में सहायक है।चूंकि यह परिसंचारी मैट्रिक्स ऑपरेटर है (केवल दो तर्कों के बीच अंतर पर निर्भर करता है), इसके ईगेनफ़ंक्शन फोरियर श्रेणी कॉम्प्लेक्स घातांक प्रकार्य अतिरिक्त, चूंकि एलटीआई ऑपरेटरों के ईगेनफ़ंक्शन भी घातीय कार्य हैं, डब्ल्यूएसएस यादृच्छिक संकेतों का एलटीआई प्रसंस्करण अत्यधिक ट्रैक्टेबल है - सभी संगणना आवृत्ति डोमेन में किए जा सकते हैं।इस प्रकार, डब्ल्यूएसएस धारणा को सिग्नल प्रोसेसिंग कलन विधि में व्यापक रूप से नियोजित किया जाता है।
जटिल स्टोकेस्टिक प्रक्रिया के लिए परिभाषा
मामले में जहां जटिल स्टोकेस्टिक प्रक्रिया है जिसे ऑटोकोवेरियन फलन के रूप में परिभाषित किया गया है और, आवश्यकताओं के अतिरिक्त Eq.3, यह आवश्यक है कि छद्म-ऑटोकोवेरियन फलन केवल समय अंतराल पर निर्भर करता है।सूत्रों में, डब्ल्यूएसएस है, यदि
|
(Eq.4) |
संयुक्त स्थिरता
स्थिरता की अवधारणा को दो स्टोकेस्टिक प्रक्रियाओं तक बढ़ाया जा सकता है।
संयुक्त सख्त-तात्पर्य स्थिरता
यदि दो स्टोकेस्टिक प्रक्रियाएं और यदि उनके संयुक्त संचयी वितरण को संयुक्त रूप से सख्त-तात्पर्य स्थिर कहा जाता है समय बदलाव के अनुसार अपरिवर्तित रहता है,
|
(Eq.5) |
संयुक्त (m + n) th-क्रम स्थिरता
यदि दो यादृच्छिक प्रक्रियाएं और कहा जाता है कि संयुक्त रूप से (M + N) वें क्रम स्थिर कहा जाता है ;[2]: p. 159
|
(Eq.6) |
संयुक्त कमजोर या व्यापक-तात्पर्य स्थिरता
यदि दो स्टोकेस्टिक प्रक्रियाएं और यदि वे दोनों व्यापक-सेंस स्थिर और उनके क्रॉस-कोवरियन फलन हैं केवल समय के अंतर पर निर्भर करता है ।इसे इस प्रकार संक्षेपित किया जा सकता है:
|
(Eq.7) |
स्थिरता के प्रकारों के बीच संबंध
- यदि स्टोकेस्टिक प्रक्रिया N-th-क्रम स्थिरता है, तो यह सभी के लिए M-th-क्रम स्थिरता भी है ।
- यदि स्टोकेस्टिक प्रक्रिया दूसरा क्रम स्थिर है () और परिमित दूसरे क्षण हैं, फिर यह व्यापक-तात्पर्य स्थिर भी है।[2]: p. 159
- यदि स्टोकेस्टिक प्रक्रिया व्यापक-तात्पर्य स्थिर है, तो यह आवश्यक नहीं कि दूसरा क्रम स्थिर हो।[2]: p. 159
- यदि स्टोकेस्टिक प्रक्रिया सख्त-तात्पर्य स्थिर है और इसमें दूसरे क्षणों को परिमित किया जाता है, तो यह व्यापक-तात्पर्य स्थिर है।[3]: p. 299
- यदि दो स्टोकेस्टिक प्रक्रियाएं संयुक्त रूप से (M + N)-th-क्रम स्थिर हैं, तो यह गारंटी नहीं देता है कि व्यक्तिगत प्रक्रियाएं M-th- क्रमशः N-th-क्रम स्थिर हैं[2]: p. 159
अन्य शब्दावली
सख्त स्थिरता के अतिरिक्त अन्य प्रकार के स्थिरता के लिए उपयोग की जाने वाली शब्दावली को मिश्रित किया जा सकता है।कुछ उदाहरणों का अनुसरण करते हैं।
- मौरिस प्रीस्टले m को क्रम करने के लिए स्थिरता अप का उपयोग करता है, यदि व्यापक अर्थों के लिए यहां दी गई शर्तों के समान स्थितियां m क्रम करने के लिए क्षणों से संबंधित प्रयुक्त होती हैं।[4][5] इस प्रकार व्यापक अर्थ स्थिरता क्रम 2 के लिए स्थिरता के बराबर होगी, जो यहां दी गई दूसरी-क्रम स्थिरता की परिभाषा से अलग है।
- मेहरदाद होनर्कह और जेफ कैर्स भी कई-पॉइंट जियोस्टैटिस्टिक्स के संदर्भ में स्थिरता की धारणा का उपयोग करते हैं, जहां उच्च एन-पॉइंट आँकड़ों को स्थानिक डोमेन में स्थिर माना जाता है।[6]
- पेजमन तहमासेबी और मुहम्मद साहिमी ने अनुकूली शैनन-आधारित कार्यप्रणाली प्रस्तुत की है जिसका उपयोग किसी भी गैर-स्थिर प्रणालियों के प्रतिरूपण के लिए किया जा सकता है।[7]
विभेदक
कुछ समय श्रृंखला को स्थिर करने का एक प्रणाली लगातार टिप्पणियों के बीच अंतर की गणना करना है। इसे यूनिट रूट के रूप में जाना जाता है।डिफरेंसिंग समय श्रृंखला के स्तर में परिवर्तन को हटाकर, और इसलिए रुझानों को समाप्त करके समय श्रृंखला के माध्य को स्थिर करने मेंसहायता कर सकती है।यह मौसम को भी हटा सकता है, यदि अंतर को उचित रूप से लिया जाता है (उदाहरण के लिए अलग-अलग अवलोकन 1 वर्ष के अतिरिक्त वर्ष-एलओ को हटाने के लिए)।
लॉगरिथम जैसे परिवर्तन समय श्रृंखला के विचरण को स्थिर करने में सहायता कर सकते हैं।
गैर-स्थिर टाइम्स श्रृंखला की पहचान करने के तरीकों में से ऑटोकॉरेलेशन प्लॉट है।कभी -कभी, मूल समय श्रृंखला की तुलना में एसीएफ प्लॉट में मौसमी पैटर्न अधिक दिखाई देंगे; चूंकि, यह स्थिति हमेशा नहीं होता है।[8] नॉनस्थिरता टाइम सीरीज़ स्थिर दिख सकती है
गैर-स्थिरता की पहचान करने के लिए एक और दृष्टिकोण श्रृंखला के लाप्लास रूपांतरण को देखना है, जो घातीय रुझानों और साइनसोइडल सीज़निटी (जटिल घातीय रुझानों) दोनों की पहचान करेगा।सिग्नल विश्लेषण से संबंधित विधि जैसे कि तरंग रूपांतरण और फूरियर रूपांतरण भी सहायक हो सकते हैं।
यह भी देखें
- लेवी प्रक्रिया
- स्थिर एर्गोडिक प्रक्रिया
- वीनर -खिनचिन प्रमेय
- उग्रता
- सांख्यिकीय नियमितता
- ऑटोकैरेलेशन
- संभावना है
संदर्भ
- ↑ Gagniuc, Paul A. (2017). Markov Chains: From Theory to Implementation and Experimentation. USA, NJ: John Wiley & Sons. pp. 1–256. ISBN 978-1-119-38755-8.
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Park,Kun Il (2018). Fundamentals of Probability and Stochastic Processes with Applications to Communications. Springer. ISBN 978-3-319-68074-3.
- ↑ 3.0 3.1 Ionut Florescu (7 November 2014). Probability and Stochastic Processes. John Wiley & Sons. ISBN 978-1-118-59320-2.
- ↑ Priestley, M. B. (1981). Spectral Analysis and Time Series. Academic Press. ISBN 0-12-564922-3.
- ↑ Priestley, M. B. (1988). Non-linear and Non-stationary Time Series Analysis. Academic Press. ISBN 0-12-564911-8.
- ↑ Honarkhah, M.; Caers, J. (2010). "Stochastic Simulation of Patterns Using Distance-Based Pattern Modeling". Mathematical Geosciences. 42 (5): 487–517. doi:10.1007/s11004-010-9276-7.
- ↑ Tahmasebi, P.; Sahimi, M. (2015). "Reconstruction of nonstationary disordered materials and media: Watershed transform and cross-correlation function" (PDF). Physical Review E. 91 (3): 032401. doi:10.1103/PhysRevE.91.032401. PMID 25871117.
- ↑ "8.1 Stationarity and differencing | OTexts". www.otexts.org. Retrieved 2016-05-18.
आगे की पढाई
- Enders, Walter (2010). Applied Econometric Time Series (Third ed.). New York: Wiley. pp. 53–57. ISBN 978-0-470-50539-7.
- Jestrovic, I.; Coyle, J. L.; Sejdic, E (2015). "The effects of increased fluid viscosity on stationary characteristics of EEG signal in healthy adults". Brain Research. 1589: 45–53. doi:10.1016/j.brainres.2014.09.035. PMC 4253861. PMID 25245522.
- Hyndman, Athanasopoulos (2013). Forecasting: Principles and Practice. Otexts. https://www.otexts.org/fpp/8/1