कोहोलॉजिकल आयाम: Difference between revisions

From Vigyanwiki
No edit summary
Line 54: Line 54:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 13/02/2023]]
[[Category:Created On 13/02/2023]]
[[Category:Vigyan Ready]]

Revision as of 12:08, 16 February 2023

अमूर्त बीजगणित में, सह-वैज्ञानिक आयाम एक समूह (गणित) का एक अपरिवर्तनीय है जो इसके प्रतिनिधित्व की समरूप जटिलता को मापता है। इसमें ज्यामितीय समूह सिद्धांत, टोपोलॉजी और बीजगणितीय संख्या सिद्धांत में महत्वपूर्ण अनुप्रयोग हैं।

एक समूह का कोहोलॉजिकल आयाम

अधिकांश सह-वैज्ञानिक अपरिवर्तन शीलताओं के रूप में, सह-वैज्ञानिक आयाम में "वलयाकार गुणांक" R का विकल्प सम्मिलित होता है, जिसमें R = 'Z', पूर्णांकों की चक्रीय द्वारा दिए गए एक प्रमुख विशेष प्रकरण के साथ होता है। G को एक असतत समूह R को एक इकाई के साथ गैर-शून्य वलय, और RG को समूह वलय होने दें। समूह G में 'सह-वैज्ञानिक आयाम n से कम या उसके बराबर है, जिसे निरूपित cd के रूप में दर्शाया गया है , R(G) ≤ n, यदि अतिसूक्ष्म RG-मापांक R में लंबाई n का प्रक्षेपी विश्लेषण है, अर्थात प्रक्षेपी मॉड्यूल RG-मापांक P0 हैं, ..., Pn और RG-मापांक समरूपता dk: PkPk − 1 (K = 1, ..., n) और d0: P0R, जैसे कि dk की छवि dk − 1 के कर्नेल के साथ समानता रखता है k = 1, ..., n और dn की गिरी के लिए कर्नेल अतिसूक्ष्म है।

समतुल्य रूप से, सह-वैज्ञानिक आयाम n से कम या उसके बराबर है यदि एक मनमाने ढंग से RG-मापांक M के लिए, M में गुणांक के साथ G का समूह कोहोलॉजी डिग्री k > n, अर्थात Hk में विलुप्त हो जाता है, (G,M) = 0 जब भी k > n अभाज्य p के लिए p-सह-वैज्ञानिक आयाम समान रूप से p-आघूर्ण समूह Hk के संदर्भ में परिभाषित किया गया है।[1]

सबसे सूक्ष्म n इस प्रकार है कि G का सह-वैज्ञानिक आयाम n से कम या उसके बराबर है, G का 'सह-वैज्ञानिक आयाम' है (गुणांक R के साथ), जिसे निरूपित किया जाता हैl

एक मुक्त विश्लेषण एक अनुबंधित स्थान X पर समूह G की एक मुक्त क्रियाविधि से प्राप्त किया जा सकता है। विशेष रूप से, यदि X एक असतत समूह G की मुक्त क्रियाविधि के साथ आयाम n का एक अनुबंधित CW क्रियाक्षेत्र है जो कोशिकाओं को तब अनुमति देता हैl

उदाहरण

उदाहरण के पहले समूह में, मान लीजिए गुणांकों की वलय R है।

  • एक मुक्त समूह में सह-वैज्ञानिक आयाम एक होता है। जैसा कि जॉन स्टालिंग्स (अंतिम रूप से उत्पन्न समूह के लिए) और रिचर्ड स्वान (पूर्ण सामान्यता में) द्वारा दिखाया गया है, यह गुण मुक्त समूह की विशेषता है। इस तरह समरूप बीजगणित में आयाम की सामान्य परिभाषा के साथ एक संबंध स्थापित किया जाता है, इस परिणाम को स्टालिंग्स-स्वान प्रमेय के रूप में जाना जाता है।[2] समूह G के लिए स्टैलिंग्स-स्वान प्रमेय कहता है कि G मुक्त है यदि और केवल यदि G द्वारा एबेलियन कर्नेल के साथ प्रत्येक समूह विस्तार को विभाजित किया गया है।[3]
  • गोले के अलावा एक संक्षिप्त जगह, जुड़ा हुआ स्थान, उन्मुखता रीमैन सतह के मौलिक समूह में सह-वैज्ञानिक आयाम दो हैं।
  • अधिक सामान्य रूप से,आयाम n के एक बंद, जुड़े हुए, ओरिएंटेबल एस्फेरिकल समतल कई गुना के मौलिक समूह में सह-वैज्ञानिक आयाम n है। विशेष रूप से, एक बंद ओरिएंटेबल हाइपरबॉलिक एन-मैनिफोल्ड के मौलिक समूह में सह-वैज्ञानिक आयाम n है।
  • गैर-अतिसूक्ष्म परिमित समूह में अनंत सह-वैज्ञानिक आयाम ओवर है . अधिक सामान्यतः, गैर-अतिसूक्ष्म आघूर्ण (बीजगणित) वाले समूहों के लिए सही है।
  • सबसे महत्वपूर्ण एक (चिरसम्मत) सह-वैज्ञानिक आयाम है, जिसे निरूपित किया गया है, जिसे अतिसूक्ष्म-मॉड्यूल के प्रक्षेपी आयाम के रूप में परिभाषित किया गया है। विभिन्न वर्गों के समूहों के लिए कई लेखकों द्वारा इस अपरिवर्तनीय का अध्ययन किया गया है।

अब एक सामान्य वलय R के प्रकरण पर विचार करें,

  • एक समूह G का कोहोमोलॉजिकल आयाम 0 है यदि और केवल यदि इसका समूह वलय RG सेमीसिम्पल बीजगणित है। इस प्रकार एक परिमित समूह में कोहोलॉजिकल आयाम 0 है, यदि और केवल अगर इसका क्रम (या, समतुल्य, इसके तत्वों के क्रम) R में व्युत्क्रम होता है।
  • स्टैलिंग्स-स्वान प्रमेय का सामान्यीकरण , मार्टिन डनवुडी ने प्रमाणित किया कि एक समूह के मनमाना वलय R पर अधिक से अधिक एक कोहोमोलॉजिकल आयाम होता है, अगर केवल यह परिमित समूहों के एक जुड़े हुए ग्राफ का मौलिक समूह है, जिनके क्रम R में व्युत्क्रम है।

एक क्षेत्र का कोहोलॉजिकल आयाम

एक क्षेत्र K का p-सह-वैज्ञानिक आयाम, K के एक वियोज्य बंद होने के गैलोइस समूह का p-सह-वैज्ञानिक आयाम है।[4] K का सह-वैज्ञानिक आयाम सभी अभाज्य p पर p-सह-वैज्ञानिक आयाम का सर्वोच्च है।[5]


उदाहरण

  • गैर-शून्य विशेषता P के प्रत्येक क्षेत्र में अधिक से अधिक 1 P-सह-वैज्ञानिक आयाम होता है।[6]
  • प्रत्येक परिमित क्षेत्र में निरपेक्ष गैल्वा समूह समरूपी होता है और इसी तरह सह-वैज्ञानिक आयाम 1 है।[7]
  • औपचारिक लॉरेंट श्रृंखला का क्षेत्र गैर-शून्य विशेषता के बीजगणितीय रूप से बंद क्षेत्र k पर भी निरपेक्ष गैलोज़ समूह समरूपी है और इसी तरह सह-वैज्ञानिक आयाम 1 है।[7]


यह भी देखें

संदर्भ

  1. Gille & Szamuely (2006) p.136
  2. Baumslag, Gilbert (2012). Topics in Combinatorial Group Theory. Springer Basel AG. p. 16.
  3. Gruenberg, Karl W. (1975). "Review of Homology in group theory by Urs Stammbach". Bulletin of the American Mathematical Society. 81: 851–854. doi:10.1090/S0002-9904-1975-13858-4.
  4. Shatz (1972) p.94
  5. Gille & Szamuely (2006) p.138
  6. Gille & Szamuely (2006) p.139
  7. 7.0 7.1 Gille & Szamuely (2006) p.140