क्वासी-आइसोमेट्री: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
गणित में, एक अर्ध-सममिति दो मापीय समष्टि के बीच एक फलन (गणित) है जो इन समष्टि के बड़े पैमाने पर ज्यामिति का प्रकरण है और उनके छोटे पैमाने के विवरण को अनदेखा करता है। दो मापीय समष्टि अर्ध-सममितीय हैं यदि उनके बीच अर्ध-सममिति सम्मिलित है। अर्ध-सममितीय होने का गुण मापीय समष्टि के [[वर्ग (सेट सिद्धांत)|वर्ग]] पर [[तुल्यता संबंध]] की तरह व्यवहार करता है।
गणित में, एक अर्ध-सममिति दो मापीय समष्टि के बीच एक फलन (गणित) है जो इन समष्टि के बड़े पैमाने पर ज्यामिति का प्रकरण है और उनके छोटे पैमाने के विवरण को अनदेखा करता है। दो मापीय समष्टि अर्ध-सममितीय हैं यदि उनके बीच अर्ध-सममिति सम्मिलित है। अर्ध-सममितीय होने का गुण मापीय समष्टि के [[वर्ग (सेट सिद्धांत)|वर्ग]] पर [[तुल्यता संबंध|समानता संबंध]] की तरह व्यवहार करता है।


ग्रोमोव के काम के बाद, ज्यामितीय समूह सिद्धांत में अर्ध-सममिति की अवधारणा विशेष रूप से महत्वपूर्ण है।<ref>{{citation|first=Martin R.|last=Bridson|authorlink=Martin Bridson|contribution=Geometric and combinatorial group theory|pages=431–448|title=The Princeton Companion to Mathematics|editor1-first=Timothy|editor1-last=Gowers|editor1-link=Timothy Gowers|editor2-first=June|editor2-last=Barrow-Green|editor3-first=Imre|editor3-last=Leader|editor3-link=Imre Leader|year=2008|publisher=Princeton University Press|isbn=978-0-691-11880-2|title-link=The Princeton Companion to Mathematics}}
ग्रोमोव के काम के बाद, ज्यामितीय समूह सिद्धांत में अर्ध-सममिति की अवधारणा विशेष रूप से महत्वपूर्ण है।<ref>{{citation|first=Martin R.|last=Bridson|authorlink=Martin Bridson|contribution=Geometric and combinatorial group theory|pages=431–448|title=The Princeton Companion to Mathematics|editor1-first=Timothy|editor1-last=Gowers|editor1-link=Timothy Gowers|editor2-first=June|editor2-last=Barrow-Green|editor3-first=Imre|editor3-last=Leader|editor3-link=Imre Leader|year=2008|publisher=Princeton University Press|isbn=978-0-691-11880-2|title-link=The Princeton Companion to Mathematics}}
Line 19: Line 19:


== उदाहरण ==
== उदाहरण ==
[[यूक्लिडियन विमान]] और [[मैनहट्टन दूरी]] वाले विमान के बीच का मानचित्र जो हर बिंदु को खुद को भेजता है एक अर्ध-सममिति है: इसमें, दूरियों को अधिकतम के एक कारक से गुणा किया जाता है <math>\sqrt 2</math>. ध्यान दें कि कोई सममिति नहीं हो सकती है, उदाहरण के लिए, अंक <math>(1, 0), (-1, 0), (0, 1), (0, -1)</math> मैनहट्टन दूरी में एक दूसरे से समान दूरी के हैं, लेकिन यूक्लिडियन विमान में, ऐसे 4 बिंदु नहीं हैं जो एक दूसरे से समान दूरी के हों।
[[यूक्लिडियन विमान|यूक्लिडीय समतल]] और [[मैनहट्टन दूरी]] वाले समतल के बीच का मानचित्र जो प्रत्येक बिंदु को स्वयं को भेजता है यह एक अर्ध-सममिति है: इसमें, दूरियों को अधिकतम <math>\sqrt 2</math> के एक कारक से गुणा किया जाता है। ध्यान दें कि कोई समरूपता नहीं हो सकती है, उदाहरण के लिए, बिंदु <math>(1, 0), (-1, 0), (0, 1), (0, -1)</math> मैनहट्टन दूरी में एक दूसरे से समान दूरी के हैं, लेकिन यूक्लिडीय समतल में, ऐसे 4 बिंदु नहीं हैं बिंदु जो एक दूसरे से समान दूरी के हैं।


वो मानचित्र <math>f:\mathbb{Z}^n\mapsto\mathbb{R}^n</math> (दोनों [[यूक्लिडियन मीट्रिक|यूक्लिडियन मापीय]] के साथ) जो प्रत्येक भेजता है <math>n</math>-पूर्णांकों का ट्यूपल स्वयं के लिए अर्ध-सममिति है: दूरी बिल्कुल संरक्षित होती है, और प्रत्येक वास्तविक ट्यूपल दूरी के अंदर होता है <math>\sqrt{n/4}</math> एक पूर्णांक टपल का। दूसरी दिशा में, असंतुलित कार्य जो वास्तविक संख्याओं के प्रत्येक टपल को निकटतम पूर्णांक टपल तक गोल करता है, वह भी एक अर्ध-सममिति है: प्रत्येक बिंदु को इस मानचित्र द्वारा दूरी के अंदर एक बिंदु पर ले जाया जाता है। <math>\sqrt{n/4}</math> इसका, इसलिए राउंडिंग बिंदुओं के जोड़े के बीच की दूरी को अधिक से अधिक जोड़कर या घटाकर परिवर्तित कर देता है <math>2\sqrt{n/4}</math>.
मानचित्र <math>f:\mathbb{Z}^n\mapsto\mathbb{R}^n</math> (दोनों [[यूक्लिडियन मीट्रिक|यूक्लिडियन मापीय]] के साथ) जो पूर्णांकों के प्रत्येक <math>n</math>- टपल स्वयं को भेजता है, यह अर्ध-सममिति दूरी है बिल्कुल संरक्षित हैं, और प्रत्येक वास्तविक टपल एक पूर्णांक टपल की दूरी <math>\sqrt{n/4}</math> के अंदर है। दूसरी दिशा में, असंतुलित कार्य जो वास्तविक संख्याओं के प्रत्येक टपल को निकटतम पूर्णांक टपल तक ले जाता है, वह भी एक अर्ध-सममिति है: प्रत्येक बिंदु को इस मानचित्र द्वारा दूरी <math>\sqrt{n/4}</math> के अंदर एक बिंदु पर ले जाया जाता है। इसलिए अधिकतम <math>2\sqrt{n/4}</math> बिंदुओं के जोड़े के बीच की दूरी को अधिक से अधिक जोड़कर या घटाकर परिवर्तित कर देता है।


परिमित या परिबद्ध मापीय समष्टि की प्रत्येक जोड़ी अर्ध-सममितीय है। इस स्थिति में, प्रत्येक कार्य एक समष्टि से दूसरे समष्टि पर एक अर्ध-सममिति है।
परिमित या परिबद्ध मापीय समष्टि की प्रत्येक जोड़ी अर्ध-सममितीय है। इस स्थिति में, प्रत्येक फलन एक समष्टि से दूसरे समष्टि पर एक अर्ध-सममिति है।


== तुल्यता संबंध ==
== समानता संबंध ==
यदि <math>f:M_1\mapsto M_2</math> एक अर्ध-सममिति है, तो एक अर्ध-सममिति सम्मिलित है <math>g:M_2\mapsto M_1</math>. वास्तव में, <math>g(x)</math> देकर परिभाषित किया जा सकता है <math>y</math> की छवि में कोई भी बिंदु हो <math>f</math> वह दूरी के अंदर है <math>C</math> का <math>x</math>, और दे रहा है <math>g(x)</math> किसी भी बिंदु पर हो <math>f^{-1}(y)</math>.
यदि <math>f:M_1\mapsto M_2</math> एक अर्ध-सममिति है, तो एक अर्ध-सममिति <math>g:M_2\mapsto M_1</math>सम्मिलित है। वास्तव में, <math>g(x)</math> <math>y</math> की छवि में कोई भी बिंदु <math>f</math> देकर परिभाषित किया जा सकता है, जो की <math>x</math> की दूरी <math>C</math> के अंदर है और <math>g(x)</math> किसी भी बिंदु <math>f^{-1}(y)</math> पर है।


चूंकि [[पहचान समारोह]] एक अर्ध-सममिति है, और दो अर्ध-सममिति की कार्यात्मक संरचना एक अर्ध-सममिति है, यह इस प्रकार है कि अर्ध-सममितीय होने की संपत्ति मापीय समष्टि के वर्ग पर एक तुल्यता संबंध की तरह व्यवहार करती है।
चूंकि पहचान मानचित्र एक अर्ध-सममिति है, और दो अर्ध-सममिति की कार्यात्मक संरचना एक अर्ध-सममिति है, यह इस प्रकार है कि अर्ध-सममितीय होने के गुण मापीय समष्टि के वर्ग पर एक समानता संबंध की तरह व्यवहार करती है।


== ज्यामितीय समूह सिद्धांत में प्रयोग करें ==
== ज्यामितीय समूह सिद्धांत में प्रयोग करें ==
एक निश्चित रूप से उत्पन्न [[समूह (गणित)]] G के समूह S के एक परिमित जनरेटिंग सेट को देखते हुए, हम S और G के संबंधित [[केली ग्राफ]] बना सकते हैं। यदि हम प्रत्येक किनारे की लंबाई 1 होने की घोषणा करते हैं तो यह ग्राफ एक मापीय समष्टि बन जाता है। एक भिन्न परिमित जनरेटिंग सेट T का परिणाम भिन्न ग्राफ़ और भिन्न मापीय समष्टि में होता है, हालाँकि दो समष्टि अर्ध-सममितीय होते हैं।<ref>R. B. Sher and [[R. J. Daverman]] (2002), ''Handbook of Geometric Topology'', North-Holland. {{isbn|0-444-82432-4}}.</ref> यह अर्ध-सममिति क्लास इस प्रकार ग्रुप जी का एक इनवेरिएंट (गणित) है। मेट्रिक स्पेस की कोई भी संपत्ति जो केवल स्पेस के अर्ध-सममिति क्लास पर निर्भर करती है, तुरंत ग्रुप्स का एक और इनवेरिएंट उत्पन्न करती है, जो ग्रुप थ्योरी के फील्ड को ज्योमेट्रिक तरीकों से खोलती है।
एक निश्चित रूप से उत्पन्न समूह G के एक परिमित उत्पादक समुच्चय S को देखते हुए, हम S और G के संबंधित केली ग्राफ बना सकते हैं। यह ग्राफ एक मापीय समष्टि बन जाता है यदि हम प्रत्येक किनारे की लंबाई 1 होने की घोषणा करते हैं। एक अलग परिमित उत्पादक समुच्चय T परिणाम एक अलग ग्राफ और एक अलग मापीय समष्टि में लेते हैं, हालाँकि दो समष्टि अर्ध-सममितीय होते हैं।<ref>R. B. Sher and [[R. J. Daverman]] (2002), ''Handbook of Geometric Topology'', North-Holland. {{isbn|0-444-82432-4}}.</ref> यह अर्ध-सममिति वर्ग समूह इस प्रकार समूह G अपरिवर्तनशील है। मापीय समष्टि  का कोई भी गुण जो केवल समष्टि के अर्ध-सममिति वर्ग पर निर्भर करती है, तुरंत समूहों के एक और अपरिवर्तनशील उत्पन्न करती है, समूह सिद्धांत के क्षेत्र को ज्यामितीय तरीकों से प्रारंभ करती है।


अधिक सामान्य रूप से, 'Svarc-Milnor lemma' में कहा गया है कि यदि एक समूह G एक उपयुक्त जियोडेसिक स्पेस X पर कॉम्पैक्ट भागफल के साथ उपयुक्त रूप से बंद कार्रवाई करता है तो G, X के लिए अर्ध-सममितीय है (जिसका अर्थ है कि G के लिए कोई भी केली ग्राफ है)। यह एक दूसरे को अर्ध-सममितीय समूहों के नए उदाहरण देता है:
अधिक सामान्य रूप से, स्वार्क–मिल्नोर लेम्मा में कहा गया है कि यदि एक समूह G उपयुक्त अल्पान्तरी समष्टि X पर सुसम्बद्ध भागफल के साथ ठीक से काम करता है तो G, X के लिए अर्ध-सममितीय है (जिसका अर्थ है कि G के लिए कोई केली ग्राफ है)। यह समूहों के अर्ध-सममितीय समूहों के एक दूसरे के नए उदाहरण देता है:
* यदि G' G में एक उपसमूह के परिमित सूचकांक का एक उपसमूह है तो G', G के लिए अर्ध-सममितीय है;
* यदि G', G में परिमित सूचकांक का एक उपसमूह है तो G', G के लिए अर्ध-सममितीय है;
* यदि जी और एच एक ही आयाम डी के दो कॉम्पैक्ट [[अतिशयोक्तिपूर्ण कई गुना]] के मूलभूत समूह हैं तो वे दोनों हाइपरबॉलिक स्पेस 'एच' के अर्ध-सममितीय हैं<sup>d</sup> और इसलिए एक दूसरे के लिए; दूसरी ओर परिमित-आयतन के मौलिक समूहों के असीम रूप से कई अर्ध-सममिति वर्ग हैं।<ref>{{cite journal | last=Schwartz | first=Richard | title=The Quasi-Isometry Classification of Rank One Lattices | journal=I.H.É.S. Publications Mathématiques | date=1995 | volume=82 | pages=133&ndash;168| doi=10.1007/BF02698639 | s2cid=67824718 | url=http://www.numdam.org/item/PMIHES_1995__82__133_0/ }}</ref>
* यदि G और H एक ही आयाम d के दो संहत [[अतिशयोक्तिपूर्ण कई गुना|अतिपरवलयिक कई गुना]] के मौलिक समूह हैं तो वे दोनों अतिपरवलयिक समष्टि 'H<sup>d</sup>' के के अर्ध-सममितीय हैं और इसलिए दूसरी ओर एक दूसरे के लिए मौलिक समूहों के परिमित-आयतन का अधिकतम सीमा तक कई अर्ध-सममिति वर्ग हैं।<ref>{{cite journal | last=Schwartz | first=Richard | title=The Quasi-Isometry Classification of Rank One Lattices | journal=I.H.É.S. Publications Mathématiques | date=1995 | volume=82 | pages=133&ndash;168| doi=10.1007/BF02698639 | s2cid=67824718 | url=http://www.numdam.org/item/PMIHES_1995__82__133_0/ }}</ref>




Line 44: Line 44:
ए कहा जाता है <math>(C,K)</math>-quasi-geodesic। जाहिर तौर पर जियोडेसिक्स (आर्कलेंथ द्वारा पैरामीट्रिज्ड) अर्ध-जियोडेसिक्स हैं। तथ्य यह है कि कुछ स्थानों में आक्षेप सामान्य रूप से सच है, अर्थात प्रत्येक अर्ध-जियोडेसिक एक वास्तविक जियोडेसिक की सीमाबद्ध दूरी के अंदर रहता है, जिसे [[मोर्स हेडवर्ड]] कहा जाता है (अंतर टोपोलॉजी में संभव्यता अधिक व्यापक रूप से ज्ञात मोर्स लेम्मा के साथ भ्रमित नहीं होना चाहिए)। औपचारिक रूप से कथन है:
ए कहा जाता है <math>(C,K)</math>-quasi-geodesic। जाहिर तौर पर जियोडेसिक्स (आर्कलेंथ द्वारा पैरामीट्रिज्ड) अर्ध-जियोडेसिक्स हैं। तथ्य यह है कि कुछ स्थानों में आक्षेप सामान्य रूप से सच है, अर्थात प्रत्येक अर्ध-जियोडेसिक एक वास्तविक जियोडेसिक की सीमाबद्ध दूरी के अंदर रहता है, जिसे [[मोर्स हेडवर्ड]] कहा जाता है (अंतर टोपोलॉजी में संभव्यता अधिक व्यापक रूप से ज्ञात मोर्स लेम्मा के साथ भ्रमित नहीं होना चाहिए)। औपचारिक रूप से कथन है:


:होने देना <math>\delta, C, K > 0</math> और <math>X</math> एक उपयुक्त δ-हाइपरबॉलिक स्पेस। वहां सम्मिलित <math>M</math> ऐसा कि किसी के लिए <math>(C, K)</math>-quasi-geodesic <math>\phi</math> एक जियोडेसिक सम्मिलित है <math>L</math> में <math>X</math> ऐसा है कि <math>d(\phi(t), L) \le M</math> सभी के लिए <math>t \in \mathbb R</math>.
:होने देना <math>\delta, C, K > 0</math> और <math>X</math> एक उपयुक्त δ-अतिपरवलयिक स्पेस। वहां सम्मिलित <math>M</math> ऐसा कि किसी के लिए <math>(C, K)</math>-quasi-geodesic <math>\phi</math> एक जियोडेसिक सम्मिलित है <math>L</math> में <math>X</math> ऐसा है कि <math>d(\phi(t), L) \le M</math> सभी के लिए <math>t \in \mathbb R</math>.


यह ज्यामितीय समूह सिद्धांत में एक महत्वपूर्ण उपकरण है। एक तत्काल आवेदन यह है कि उपयुक्त अतिशयोक्तिपूर्ण समष्टि के बीच कोई भी अर्ध-सममिति उनकी सीमाओं के बीच एक होमोमोर्फिज्म को प्रेरित करती है। यह परिणाम मोस्टो कठोरता प्रमेय के प्रमाण में पहला चरण है।
यह ज्यामितीय समूह सिद्धांत में एक महत्वपूर्ण उपकरण है। एक तत्काल आवेदन यह है कि उपयुक्त अतिपरवलयिक समष्टि के बीच कोई भी अर्ध-सममिति उनकी सीमाओं के बीच एक होमोमोर्फिज्म को प्रेरित करती है। यह परिणाम मोस्टो कठोरता प्रमेय के प्रमाण में पहला चरण है।


== समूहों के अर्ध-सममिति इनवेरिएंट के उदाहरण ==
== समूहों के अर्ध-सममिति इनवेरिएंट के उदाहरण ==
Line 55: Line 55:
=== अतिशयोक्ति ===
=== अतिशयोक्ति ===
{{main|Hyperbolic group}}
{{main|Hyperbolic group}}
एक समूह को अतिपरवलयिक कहा जाता है यदि इसका एक केली ग्राफ कुछ δ के लिए δ-अतिपरवलयिक समष्टि है। अतिपरवलयिकता की विभिन्न परिभाषाओं के बीच अनुवाद करते समय, δ का विशेष मूल्य बदल सकता है, लेकिन एक अतिशयोक्तिपूर्ण समूह के परिणामी विचार समतुल्य हो जाते हैं।
एक समूह को अतिपरवलयिक कहा जाता है यदि इसका एक केली ग्राफ कुछ δ के लिए δ-अतिपरवलयिक समष्टि है। अतिपरवलयिकता की विभिन्न परिभाषाओं के बीच अनुवाद करते समय, δ का विशेष मूल्य बदल सकता है, लेकिन एक अतिपरवलयिक समूह के परिणामी विचार समतुल्य हो जाते हैं।


अतिशयोक्तिपूर्ण समूहों में समूहों के लिए एक हल करने योग्य शब्द समस्या है। वे द्वि[[स्वचालित समूह]] और स्वचालित समूह हैं।<ref name=charney>{{citation | last=Charney | first=Ruth | title=Artin groups of finite type are biautomatic | journal=Mathematische Annalen | volume= 292 | year=1992 | doi=10.1007/BF01444642 | pages=671–683| s2cid=120654588 }}</ref> वास्तव में, वे स्वचालित समूह हैं, अर्थात्, समूह पर एक स्वचालित संरचना होती है, जहाँ स्वीकर्ता शब्द द्वारा स्वीकृत भाषा सभी भूगणितीय शब्दों का समूह होती है।
अतिपरवलयिक समूहों में समूहों के लिए एक हल करने योग्य शब्द समस्या है। वे द्वि[[स्वचालित समूह]] और स्वचालित समूह हैं।<ref name=charney>{{citation | last=Charney | first=Ruth | title=Artin groups of finite type are biautomatic | journal=Mathematische Annalen | volume= 292 | year=1992 | doi=10.1007/BF01444642 | pages=671–683| s2cid=120654588 }}</ref> वास्तव में, वे स्वचालित समूह हैं, अर्थात्, समूह पर एक स्वचालित संरचना होती है, जहाँ स्वीकर्ता शब्द द्वारा स्वीकृत भाषा सभी भूगणितीय शब्दों का समूह होती है।


=== वृद्धि ===
=== वृद्धि ===
{{main|Growth rate (group theory)}}
{{main|Growth rate (group theory)}}
एक समूह (गणित) की विकास दर एक समूह के सममित जनरेटिंग सेट के संबंध में समूह में गेंदों के आकार का वर्णन करती है। समूह में प्रत्येक तत्व को जनरेटर के उत्पाद के रूप में लिखा जा सकता है, और विकास दर उन तत्वों की संख्या की गणना करती है जिन्हें लंबाई 'एन' के उत्पाद के रूप में लिखा जा सकता है।
एक समूह (गणित) की विकास दर एक समूह के सममित उत्पादक समुच्चय के संबंध में समूह में गेंदों के आकार का वर्णन करती है। समूह में प्रत्येक तत्व को जनरेटर के उत्पाद के रूप में लिखा जा सकता है, और विकास दर उन तत्वों की संख्या की गणना करती है जिन्हें लंबाई 'एन' के उत्पाद के रूप में लिखा जा सकता है।


बहुपद विकास के समूहों पर ग्रोमोव के प्रमेय के अनुसार | ग्रोमोव का प्रमेय, बहुपद वृद्धि का एक समूह वस्तुतः नगण्य है, अर्थात इसमें एक [[उपसमूह]] के परिमित सूचकांक का एक [[निलपोटेंट समूह]] उपसमूह है। विशेष रूप से, बहुपद वृद्धि का क्रम <math>k_0</math> एक [[प्राकृतिक संख्या]] होना चाहिए और वास्तव में <math>\#(n)\sim n^{k_0}</math>.
बहुपद विकास के समूहों पर ग्रोमोव के प्रमेय के अनुसार | ग्रोमोव का प्रमेय, बहुपद वृद्धि का एक समूह वस्तुतः नगण्य है, अर्थात इसमें एक [[उपसमूह]] के परिमित सूचकांक का एक [[निलपोटेंट समूह]] उपसमूह है। विशेष रूप से, बहुपद वृद्धि का क्रम <math>k_0</math> एक [[प्राकृतिक संख्या]] होना चाहिए और वास्तव में <math>\#(n)\sim n^{k_0}</math>.
Line 71: Line 71:
एक [[टोपोलॉजिकल स्पेस]] के सिरे सामान्य रूप से स्पेस की "आदर्श सीमा" के [[जुड़ा हुआ घटक (टोपोलॉजी)]] हैं। यही है, प्रत्येक अंत अंतरिक्ष के अंदर अनंत तक जाने के लिए एक स्थैतिक रूप से अलग तरीके का प्रतिनिधित्व करता है। प्रत्येक छोर पर एक बिंदु जोड़ने से मूल समष्टि का एक [[संघनन (गणित)]] प्राप्त होता है, जिसे अंतिम संघनन के रूप में जाना जाता है।
एक [[टोपोलॉजिकल स्पेस]] के सिरे सामान्य रूप से स्पेस की "आदर्श सीमा" के [[जुड़ा हुआ घटक (टोपोलॉजी)]] हैं। यही है, प्रत्येक अंत अंतरिक्ष के अंदर अनंत तक जाने के लिए एक स्थैतिक रूप से अलग तरीके का प्रतिनिधित्व करता है। प्रत्येक छोर पर एक बिंदु जोड़ने से मूल समष्टि का एक [[संघनन (गणित)]] प्राप्त होता है, जिसे अंतिम संघनन के रूप में जाना जाता है।


एक अंतिम रूप से उत्पन्न समूह के सिरों को इसी केली ग्राफ के सिरों के रूप में परिभाषित किया गया है; यह परिभाषा परिमित जनरेटिंग सेट की पसंद से स्वतंत्र है। प्रत्येक सूक्ष्म रूप से उत्पन्न अनंत समूह में या तो 0,1, 2, या असीम रूप से कई छोर होते हैं, और समूहों के सिरों के बारे में स्टालिंग प्रमेय एक से अधिक छोर वाले समूहों के लिए एक अपघटन प्रदान करता है।
एक अंतिम रूप से उत्पन्न समूह के सिरों को इसी केली ग्राफ के सिरों के रूप में परिभाषित किया गया है; यह परिभाषा परिमित उत्पादक समुच्चय की पसंद से स्वतंत्र है। प्रत्येक सूक्ष्म रूप से उत्पन्न अनंत समूह में या तो 0,1, 2, या असीम रूप से कई छोर होते हैं, और समूहों के सिरों के बारे में स्टालिंग प्रमेय एक से अधिक छोर वाले समूहों के लिए एक अपघटन प्रदान करता है।


यदि दो जुड़े हुए स्थानीय रूप से परिमित ग्राफ़ अर्ध-सममितीय हैं, तो उनके सिरों की संख्या समान है।<ref>{{cite journal|journal=[[Journal of Pure and Applied Algebra]]|author=Stephen G.Brick|title=Quasi-isometries and ends of groups|volume=86|issue=1|year=1993|pages=23–33|doi=10.1016/0022-4049(93)90150-R|doi-access=free}}</ref> विशेष रूप से, दो अर्ध-सममितीय सूक्ष्म रूप से उत्पन्न समूहों में सिरों की संख्या समान होती है।
यदि दो जुड़े हुए स्थानीय रूप से परिमित ग्राफ़ अर्ध-सममितीय हैं, तो उनके सिरों की संख्या समान है।<ref>{{cite journal|journal=[[Journal of Pure and Applied Algebra]]|author=Stephen G.Brick|title=Quasi-isometries and ends of groups|volume=86|issue=1|year=1993|pages=23–33|doi=10.1016/0022-4049(93)90150-R|doi-access=free}}</ref> विशेष रूप से, दो अर्ध-सममितीय सूक्ष्म रूप से उत्पन्न समूहों में सिरों की संख्या समान होती है।
Line 77: Line 77:
=== सुविधा ===
=== सुविधा ===
{{main|Amenable group}}
{{main|Amenable group}}
एक अनुकूल समूह एक [[स्थानीय रूप से कॉम्पैक्ट]] [[टोपोलॉजिकल समूह]] 'जी' है जो बाध्य कार्यों पर एक प्रकार का औसत संचालन करता है जो कि समूह तत्वों द्वारा अनुवाद के अंतर्गत अपरिवर्तनीय (गणित) है। 1929 में [[जॉन वॉन न्यूमैन]] द्वारा [[जर्मन भाषा]] के नाम मेसबार (अंग्रेजी में मापने योग्य) के अंतर्गत बनच- टार्स्की विरोधाभास। 1949 में Mahlon M. Day ने अंग्रेजी अनुवाद amenable की शुरुआत की, जाहिरा तौर पर एक श्लेष के रूप में।<ref>Day's first published use of the word is in his abstract for an AMS summer meeting in 1949, [http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&id=pdf_1&handle=euclid.bams/1183514222 ''Means on semigroups and groups'', Bull. A.M.S. 55 (1949) 1054–1055]. Many text books on amenability, such as Volker Runde's, suggest that Day chose the word as a pun.</ref>
एक अनुकूल समूह एक [[स्थानीय रूप से कॉम्पैक्ट|स्थानीय रूप से संहत]] [[टोपोलॉजिकल समूह]] 'जी' है जो बाध्य कार्यों पर एक प्रकार का औसत संचालन करता है जो कि समूह तत्वों द्वारा अनुवाद के अंतर्गत अपरिवर्तनीय (गणित) है। 1929 में [[जॉन वॉन न्यूमैन]] द्वारा [[जर्मन भाषा]] के नाम मेसबार (अंग्रेजी में मापने योग्य) के अंतर्गत बनच- टार्स्की विरोधाभास। 1949 में Mahlon M. Day ने अंग्रेजी अनुवाद amenable की शुरुआत की, जाहिरा तौर पर एक श्लेष के रूप में।<ref>Day's first published use of the word is in his abstract for an AMS summer meeting in 1949, [http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&id=pdf_1&handle=euclid.bams/1183514222 ''Means on semigroups and groups'', Bull. A.M.S. 55 (1949) 1054–1055]. Many text books on amenability, such as Volker Runde's, suggest that Day chose the word as a pun.</ref>
[[असतत समूह सिद्धांत]] में, जहाँ G के पास [[असतत टोपोलॉजी]] है, एक सरल परिभाषा का उपयोग किया जाता है। इस सेटिंग में, एक समूह अनुमन्य है यदि कोई कह सकता है कि किसी दिए गए उपसमुच्चय में G का कितना अनुपात होता है।
[[असतत समूह सिद्धांत]] में, जहाँ G के पास [[असतत टोपोलॉजी]] है, एक सरल परिभाषा का उपयोग किया जाता है। इस सेटिंग में, एक समूह अनुमन्य है यदि कोई कह सकता है कि किसी दिए गए उपसमुच्चय में G का कितना अनुपात होता है।


Line 86: Line 86:
एक अल्ट्रालिमिट एक ज्यामितीय निर्माण है जो मापीय समष्टि 'एक्स' के अनुक्रम को निर्दिष्ट करता है<sub>n</sub>एक सीमित मापीय समष्टि। अल्ट्रालिमिट्स का एक महत्वपूर्ण वर्ग मापीय समष्टि के तथाकथित स्पर्शोन्मुख शंकु हैं। चलो (एक्स, डी) एक मापीय समष्टि बनें, चलो ω एक गैर-प्रमुख अल्ट्राफिल्टर हो <math>\mathbb N </math> और चलो पी<sub>n</sub>∈ X आधार-बिंदुओं का एक क्रम हो। फिर अनुक्रम की ω–अल्ट्रालिमिट <math>(X, \frac{d}{n}, p_n)</math> ω और के संबंध में X का स्पर्शोन्मुख शंकु कहा जाता है <math>(p_n)_n\,</math> और निरूपित किया जाता है <math>Cone_\omega(X,d, (p_n)_n)\,</math>. एक अक्सर आधार-बिंदु अनुक्रम को स्थिर होने के लिए लेता है, पी<sub>n</sub>= पी कुछ पी ∈ एक्स के लिए; इस स्थिति में स्पर्शोन्मुख शंकु p ∈ X की पसंद पर निर्भर नहीं करता है और इसे द्वारा निरूपित किया जाता है  <math>Cone_\omega(X,d)\,</math> या केवल <math>Cone_\omega(X)\,</math>.
एक अल्ट्रालिमिट एक ज्यामितीय निर्माण है जो मापीय समष्टि 'एक्स' के अनुक्रम को निर्दिष्ट करता है<sub>n</sub>एक सीमित मापीय समष्टि। अल्ट्रालिमिट्स का एक महत्वपूर्ण वर्ग मापीय समष्टि के तथाकथित स्पर्शोन्मुख शंकु हैं। चलो (एक्स, डी) एक मापीय समष्टि बनें, चलो ω एक गैर-प्रमुख अल्ट्राफिल्टर हो <math>\mathbb N </math> और चलो पी<sub>n</sub>∈ X आधार-बिंदुओं का एक क्रम हो। फिर अनुक्रम की ω–अल्ट्रालिमिट <math>(X, \frac{d}{n}, p_n)</math> ω और के संबंध में X का स्पर्शोन्मुख शंकु कहा जाता है <math>(p_n)_n\,</math> और निरूपित किया जाता है <math>Cone_\omega(X,d, (p_n)_n)\,</math>. एक अक्सर आधार-बिंदु अनुक्रम को स्थिर होने के लिए लेता है, पी<sub>n</sub>= पी कुछ पी ∈ एक्स के लिए; इस स्थिति में स्पर्शोन्मुख शंकु p ∈ X की पसंद पर निर्भर नहीं करता है और इसे द्वारा निरूपित किया जाता है  <math>Cone_\omega(X,d)\,</math> या केवल <math>Cone_\omega(X)\,</math>.


स्पर्शोन्मुख शंकु की धारणा ज्यामितीय समूह सिद्धांत में एक महत्वपूर्ण भूमिका निभाती है क्योंकि स्पर्शोन्मुख शंकु (या, अधिक परिशुद्ध रूप से, उनके [[होमियोमोर्फिज्म]] और लिप्सचिट्ज़ निरंतरता | द्वि-लिप्सचिट्ज़ प्रकार) सामान्य रूप से और सूक्ष्म रूप से उत्पन्न समूहों में मापीय समष्टि के अर्ध-सममिति इनवेरिएंट प्रदान करते हैं। विशिष्ट।<ref name="Roe">John Roe. ''Lectures on Coarse Geometry.'' [[American Mathematical Society]], 2003. {{isbn|978-0-8218-3332-2}}</ref> स्पर्शोन्मुख शंकु भी [[अपेक्षाकृत अतिशयोक्तिपूर्ण समूह]]ों और उनके सामान्यीकरण के अध्ययन में एक उपयोगी उपकरण बन जाते हैं।<ref>[[Cornelia Druţu]] and Mark Sapir (with an Appendix by [[Denis Osin]] and [[Mark Sapir]]), ''Tree-graded spaces and asymptotic cones of groups.'' [[Topology (journal)|Topology]], Volume 44 (2005), no. 5, pp. 959&ndash;1058.</ref>
स्पर्शोन्मुख शंकु की धारणा ज्यामितीय समूह सिद्धांत में एक महत्वपूर्ण भूमिका निभाती है क्योंकि स्पर्शोन्मुख शंकु (या, अधिक परिशुद्ध रूप से, उनके [[होमियोमोर्फिज्म]] और लिप्सचिट्ज़ निरंतरता | द्वि-लिप्सचिट्ज़ प्रकार) सामान्य रूप से और सूक्ष्म रूप से उत्पन्न समूहों में मापीय समष्टि के अर्ध-सममिति इनवेरिएंट प्रदान करते हैं। विशिष्ट।<ref name="Roe">John Roe. ''Lectures on Coarse Geometry.'' [[American Mathematical Society]], 2003. {{isbn|978-0-8218-3332-2}}</ref> स्पर्शोन्मुख शंकु भी [[अपेक्षाकृत अतिशयोक्तिपूर्ण समूह|अपेक्षाकृत अतिपरवलयिक समूह]]ों और उनके सामान्यीकरण के अध्ययन में एक उपयोगी उपकरण बन जाते हैं।<ref>[[Cornelia Druţu]] and Mark Sapir (with an Appendix by [[Denis Osin]] and [[Mark Sapir]]), ''Tree-graded spaces and asymptotic cones of groups.'' [[Topology (journal)|Topology]], Volume 44 (2005), no. 5, pp. 959&ndash;1058.</ref>





Revision as of 10:19, 15 February 2023

गणित में, एक अर्ध-सममिति दो मापीय समष्टि के बीच एक फलन (गणित) है जो इन समष्टि के बड़े पैमाने पर ज्यामिति का प्रकरण है और उनके छोटे पैमाने के विवरण को अनदेखा करता है। दो मापीय समष्टि अर्ध-सममितीय हैं यदि उनके बीच अर्ध-सममिति सम्मिलित है। अर्ध-सममितीय होने का गुण मापीय समष्टि के वर्ग पर समानता संबंध की तरह व्यवहार करता है।

ग्रोमोव के काम के बाद, ज्यामितीय समूह सिद्धांत में अर्ध-सममिति की अवधारणा विशेष रूप से महत्वपूर्ण है।[1]

यह जालक (समूह) समष्टि के लिए अर्ध-सममितीय है।

परिभाषा

मान लीजिए कि एक मापीय समष्टि दूसरे मापीय समष्टि के लिए से एक (आवश्यक रूप से निरंतर नहीं) फलन है। तब को अर्ध-सममिति कहा जाता है को यदि वहाँ स्थिरांक सम्मिलित हैं , , और जैसे कि निम्नलिखित दो गुण दोनों धारण करते हैं:[2]

  1. मे प्रत्येक दो बिंदुओं के लिए और , उनकी छवियों के बीच की दूरी उनकी मूल दूरी के एक कारक के अंदर योज्य स्थिरांक तक है। अधिक औपचारिक रूप से:
  2. का प्रत्येक बिंदु एक छवि बिंदु की निरंतर दूरी के अंदर है। अधिक औपचारिक रूप से:

दो मापीय समष्टि और अर्ध-सममिति कहलाते हैं यदि से को कोई अर्ध-सममिति सम्मिलित है।

एक मानचित्र को अर्ध-सममितीय अंतःस्थापन कहा जाता है यदि यह पहली शर्त को पूरा करता है लेकिन आवश्यक नहीं कि दूसरा (अर्थात यह सामान्य रूप से लिप्सचिट्ज़ निरंतरता है लेकिन सामान्य रूप से अनुमान लगाने में विफल हो सकता है)। दूसरे शब्दों में, यदि मानचित्र के माध्यम से, की एक उपसमष्टि के लिए अर्ध-सममितीय है।

दो मापीय समष्टि M1और M2'अर्ध-सममितीय' कहा जाता है, जिसे के द्वारा निरूपित किया जाता है यदि अर्ध-सममिति सम्मिलित है।

उदाहरण

यूक्लिडीय समतल और मैनहट्टन दूरी वाले समतल के बीच का मानचित्र जो प्रत्येक बिंदु को स्वयं को भेजता है यह एक अर्ध-सममिति है: इसमें, दूरियों को अधिकतम के एक कारक से गुणा किया जाता है। ध्यान दें कि कोई समरूपता नहीं हो सकती है, उदाहरण के लिए, बिंदु मैनहट्टन दूरी में एक दूसरे से समान दूरी के हैं, लेकिन यूक्लिडीय समतल में, ऐसे 4 बिंदु नहीं हैं बिंदु जो एक दूसरे से समान दूरी के हैं।

मानचित्र (दोनों यूक्लिडियन मापीय के साथ) जो पूर्णांकों के प्रत्येक - टपल स्वयं को भेजता है, यह अर्ध-सममिति दूरी है बिल्कुल संरक्षित हैं, और प्रत्येक वास्तविक टपल एक पूर्णांक टपल की दूरी के अंदर है। दूसरी दिशा में, असंतुलित कार्य जो वास्तविक संख्याओं के प्रत्येक टपल को निकटतम पूर्णांक टपल तक ले जाता है, वह भी एक अर्ध-सममिति है: प्रत्येक बिंदु को इस मानचित्र द्वारा दूरी के अंदर एक बिंदु पर ले जाया जाता है। इसलिए अधिकतम बिंदुओं के जोड़े के बीच की दूरी को अधिक से अधिक जोड़कर या घटाकर परिवर्तित कर देता है।

परिमित या परिबद्ध मापीय समष्टि की प्रत्येक जोड़ी अर्ध-सममितीय है। इस स्थिति में, प्रत्येक फलन एक समष्टि से दूसरे समष्टि पर एक अर्ध-सममिति है।

समानता संबंध

यदि एक अर्ध-सममिति है, तो एक अर्ध-सममिति सम्मिलित है। वास्तव में, की छवि में कोई भी बिंदु देकर परिभाषित किया जा सकता है, जो की की दूरी के अंदर है और किसी भी बिंदु पर है।

चूंकि पहचान मानचित्र एक अर्ध-सममिति है, और दो अर्ध-सममिति की कार्यात्मक संरचना एक अर्ध-सममिति है, यह इस प्रकार है कि अर्ध-सममितीय होने के गुण मापीय समष्टि के वर्ग पर एक समानता संबंध की तरह व्यवहार करती है।

ज्यामितीय समूह सिद्धांत में प्रयोग करें

एक निश्चित रूप से उत्पन्न समूह G के एक परिमित उत्पादक समुच्चय S को देखते हुए, हम S और G के संबंधित केली ग्राफ बना सकते हैं। यह ग्राफ एक मापीय समष्टि बन जाता है यदि हम प्रत्येक किनारे की लंबाई 1 होने की घोषणा करते हैं। एक अलग परिमित उत्पादक समुच्चय T परिणाम एक अलग ग्राफ और एक अलग मापीय समष्टि में लेते हैं, हालाँकि दो समष्टि अर्ध-सममितीय होते हैं।[3] यह अर्ध-सममिति वर्ग समूह इस प्रकार समूह G अपरिवर्तनशील है। मापीय समष्टि का कोई भी गुण जो केवल समष्टि के अर्ध-सममिति वर्ग पर निर्भर करती है, तुरंत समूहों के एक और अपरिवर्तनशील उत्पन्न करती है, समूह सिद्धांत के क्षेत्र को ज्यामितीय तरीकों से प्रारंभ करती है।

अधिक सामान्य रूप से, स्वार्क–मिल्नोर लेम्मा में कहा गया है कि यदि एक समूह G उपयुक्त अल्पान्तरी समष्टि X पर सुसम्बद्ध भागफल के साथ ठीक से काम करता है तो G, X के लिए अर्ध-सममितीय है (जिसका अर्थ है कि G के लिए कोई केली ग्राफ है)। यह समूहों के अर्ध-सममितीय समूहों के एक दूसरे के नए उदाहरण देता है:

  • यदि G', G में परिमित सूचकांक का एक उपसमूह है तो G', G के लिए अर्ध-सममितीय है;
  • यदि G और H एक ही आयाम d के दो संहत अतिपरवलयिक कई गुना के मौलिक समूह हैं तो वे दोनों अतिपरवलयिक समष्टि 'Hd' के के अर्ध-सममितीय हैं और इसलिए दूसरी ओर एक दूसरे के लिए मौलिक समूहों के परिमित-आयतन का अधिकतम सीमा तक कई अर्ध-सममिति वर्ग हैं।[4]


कसीगोडेसिक्स और मोर्स लेम्मा

एक मापीय अंतरिक्ष में एक अर्ध-जियोडेसिक का एक अर्ध-सममितीय अंतःस्थापन है में . अधिक परिशुद्ध एक मानचित्र ऐसा है कि वहाँ सम्मिलित है ताकि

ए कहा जाता है -quasi-geodesic। जाहिर तौर पर जियोडेसिक्स (आर्कलेंथ द्वारा पैरामीट्रिज्ड) अर्ध-जियोडेसिक्स हैं। तथ्य यह है कि कुछ स्थानों में आक्षेप सामान्य रूप से सच है, अर्थात प्रत्येक अर्ध-जियोडेसिक एक वास्तविक जियोडेसिक की सीमाबद्ध दूरी के अंदर रहता है, जिसे मोर्स हेडवर्ड कहा जाता है (अंतर टोपोलॉजी में संभव्यता अधिक व्यापक रूप से ज्ञात मोर्स लेम्मा के साथ भ्रमित नहीं होना चाहिए)। औपचारिक रूप से कथन है:

होने देना और एक उपयुक्त δ-अतिपरवलयिक स्पेस। वहां सम्मिलित ऐसा कि किसी के लिए -quasi-geodesic एक जियोडेसिक सम्मिलित है में ऐसा है कि सभी के लिए .

यह ज्यामितीय समूह सिद्धांत में एक महत्वपूर्ण उपकरण है। एक तत्काल आवेदन यह है कि उपयुक्त अतिपरवलयिक समष्टि के बीच कोई भी अर्ध-सममिति उनकी सीमाओं के बीच एक होमोमोर्फिज्म को प्रेरित करती है। यह परिणाम मोस्टो कठोरता प्रमेय के प्रमाण में पहला चरण है।

समूहों के अर्ध-सममिति इनवेरिएंट के उदाहरण

समूह केली ग्राफ़ के गुणों के कुछ उदाहरण निम्नलिखित हैं जो अर्ध-सममिति के अंतर्गत अपरिवर्तनीय हैं:[2]


अतिशयोक्ति

एक समूह को अतिपरवलयिक कहा जाता है यदि इसका एक केली ग्राफ कुछ δ के लिए δ-अतिपरवलयिक समष्टि है। अतिपरवलयिकता की विभिन्न परिभाषाओं के बीच अनुवाद करते समय, δ का विशेष मूल्य बदल सकता है, लेकिन एक अतिपरवलयिक समूह के परिणामी विचार समतुल्य हो जाते हैं।

अतिपरवलयिक समूहों में समूहों के लिए एक हल करने योग्य शब्द समस्या है। वे द्विस्वचालित समूह और स्वचालित समूह हैं।[5] वास्तव में, वे स्वचालित समूह हैं, अर्थात्, समूह पर एक स्वचालित संरचना होती है, जहाँ स्वीकर्ता शब्द द्वारा स्वीकृत भाषा सभी भूगणितीय शब्दों का समूह होती है।

वृद्धि

एक समूह (गणित) की विकास दर एक समूह के सममित उत्पादक समुच्चय के संबंध में समूह में गेंदों के आकार का वर्णन करती है। समूह में प्रत्येक तत्व को जनरेटर के उत्पाद के रूप में लिखा जा सकता है, और विकास दर उन तत्वों की संख्या की गणना करती है जिन्हें लंबाई 'एन' के उत्पाद के रूप में लिखा जा सकता है।

बहुपद विकास के समूहों पर ग्रोमोव के प्रमेय के अनुसार | ग्रोमोव का प्रमेय, बहुपद वृद्धि का एक समूह वस्तुतः नगण्य है, अर्थात इसमें एक उपसमूह के परिमित सूचकांक का एक निलपोटेंट समूह उपसमूह है। विशेष रूप से, बहुपद वृद्धि का क्रम एक प्राकृतिक संख्या होना चाहिए और वास्तव में .

यदि किसी भी एक्सपोनेंशियल फलन की तुलना में अधिक धीरे-धीरे बढ़ता है, G की 'सबएक्सपोनेंशियल ग्रोथ रेट' होती है। ऐसा कोई भी समूह अनुमन्य समूह है।

समाप्त

एक टोपोलॉजिकल स्पेस के सिरे सामान्य रूप से स्पेस की "आदर्श सीमा" के जुड़ा हुआ घटक (टोपोलॉजी) हैं। यही है, प्रत्येक अंत अंतरिक्ष के अंदर अनंत तक जाने के लिए एक स्थैतिक रूप से अलग तरीके का प्रतिनिधित्व करता है। प्रत्येक छोर पर एक बिंदु जोड़ने से मूल समष्टि का एक संघनन (गणित) प्राप्त होता है, जिसे अंतिम संघनन के रूप में जाना जाता है।

एक अंतिम रूप से उत्पन्न समूह के सिरों को इसी केली ग्राफ के सिरों के रूप में परिभाषित किया गया है; यह परिभाषा परिमित उत्पादक समुच्चय की पसंद से स्वतंत्र है। प्रत्येक सूक्ष्म रूप से उत्पन्न अनंत समूह में या तो 0,1, 2, या असीम रूप से कई छोर होते हैं, और समूहों के सिरों के बारे में स्टालिंग प्रमेय एक से अधिक छोर वाले समूहों के लिए एक अपघटन प्रदान करता है।

यदि दो जुड़े हुए स्थानीय रूप से परिमित ग्राफ़ अर्ध-सममितीय हैं, तो उनके सिरों की संख्या समान है।[6] विशेष रूप से, दो अर्ध-सममितीय सूक्ष्म रूप से उत्पन्न समूहों में सिरों की संख्या समान होती है।

सुविधा

एक अनुकूल समूह एक स्थानीय रूप से संहत टोपोलॉजिकल समूह 'जी' है जो बाध्य कार्यों पर एक प्रकार का औसत संचालन करता है जो कि समूह तत्वों द्वारा अनुवाद के अंतर्गत अपरिवर्तनीय (गणित) है। 1929 में जॉन वॉन न्यूमैन द्वारा जर्मन भाषा के नाम मेसबार (अंग्रेजी में मापने योग्य) के अंतर्गत बनच- टार्स्की विरोधाभास। 1949 में Mahlon M. Day ने अंग्रेजी अनुवाद amenable की शुरुआत की, जाहिरा तौर पर एक श्लेष के रूप में।[7] असतत समूह सिद्धांत में, जहाँ G के पास असतत टोपोलॉजी है, एक सरल परिभाषा का उपयोग किया जाता है। इस सेटिंग में, एक समूह अनुमन्य है यदि कोई कह सकता है कि किसी दिए गए उपसमुच्चय में G का कितना अनुपात होता है।

यदि किसी समूह में एक Følner अनुक्रम है तो यह स्वचालित रूप से अनुमन्य है।

स्पर्शोन्मुख शंकु

एक अल्ट्रालिमिट एक ज्यामितीय निर्माण है जो मापीय समष्टि 'एक्स' के अनुक्रम को निर्दिष्ट करता हैnएक सीमित मापीय समष्टि। अल्ट्रालिमिट्स का एक महत्वपूर्ण वर्ग मापीय समष्टि के तथाकथित स्पर्शोन्मुख शंकु हैं। चलो (एक्स, डी) एक मापीय समष्टि बनें, चलो ω एक गैर-प्रमुख अल्ट्राफिल्टर हो और चलो पीn∈ X आधार-बिंदुओं का एक क्रम हो। फिर अनुक्रम की ω–अल्ट्रालिमिट ω और के संबंध में X का स्पर्शोन्मुख शंकु कहा जाता है और निरूपित किया जाता है . एक अक्सर आधार-बिंदु अनुक्रम को स्थिर होने के लिए लेता है, पीn= पी कुछ पी ∈ एक्स के लिए; इस स्थिति में स्पर्शोन्मुख शंकु p ∈ X की पसंद पर निर्भर नहीं करता है और इसे द्वारा निरूपित किया जाता है या केवल .

स्पर्शोन्मुख शंकु की धारणा ज्यामितीय समूह सिद्धांत में एक महत्वपूर्ण भूमिका निभाती है क्योंकि स्पर्शोन्मुख शंकु (या, अधिक परिशुद्ध रूप से, उनके होमियोमोर्फिज्म और लिप्सचिट्ज़ निरंतरता | द्वि-लिप्सचिट्ज़ प्रकार) सामान्य रूप से और सूक्ष्म रूप से उत्पन्न समूहों में मापीय समष्टि के अर्ध-सममिति इनवेरिएंट प्रदान करते हैं। विशिष्ट।[8] स्पर्शोन्मुख शंकु भी अपेक्षाकृत अतिपरवलयिक समूहों और उनके सामान्यीकरण के अध्ययन में एक उपयोगी उपकरण बन जाते हैं।[9]


यह भी देखें

संदर्भ

  1. Bridson, Martin R. (2008), "Geometric and combinatorial group theory", in Gowers, Timothy; Barrow-Green, June; Leader, Imre (eds.), The Princeton Companion to Mathematics, Princeton University Press, pp. 431–448, ISBN 978-0-691-11880-2
  2. 2.0 2.1 P. de la Harpe, Topics in geometric group theory. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2000. ISBN 0-226-31719-6
  3. R. B. Sher and R. J. Daverman (2002), Handbook of Geometric Topology, North-Holland. ISBN 0-444-82432-4.
  4. Schwartz, Richard (1995). "The Quasi-Isometry Classification of Rank One Lattices". I.H.É.S. Publications Mathématiques. 82: 133–168. doi:10.1007/BF02698639. S2CID 67824718.
  5. Charney, Ruth (1992), "Artin groups of finite type are biautomatic", Mathematische Annalen, 292: 671–683, doi:10.1007/BF01444642, S2CID 120654588
  6. Stephen G.Brick (1993). "Quasi-isometries and ends of groups". Journal of Pure and Applied Algebra. 86 (1): 23–33. doi:10.1016/0022-4049(93)90150-R.
  7. Day's first published use of the word is in his abstract for an AMS summer meeting in 1949, Means on semigroups and groups, Bull. A.M.S. 55 (1949) 1054–1055. Many text books on amenability, such as Volker Runde's, suggest that Day chose the word as a pun.
  8. John Roe. Lectures on Coarse Geometry. American Mathematical Society, 2003. ISBN 978-0-8218-3332-2
  9. Cornelia Druţu and Mark Sapir (with an Appendix by Denis Osin and Mark Sapir), Tree-graded spaces and asymptotic cones of groups. Topology, Volume 44 (2005), no. 5, pp. 959–1058.