चुंबकीय धारक: Difference between revisions

From Vigyanwiki
No edit summary
Line 11: Line 11:


== डिजाइन ==
== डिजाइन ==
[[File:amb2.svg|thumb|एकल अक्ष के लिए मूल संचालन]]एक घूर्णन [[विद्युत कंडक्टर]] में एड़ी धाराओं को शामिल करने के आधार पर एक सक्रिय [[चुंबक]]ीय असर [[विद्युत चुम्बकीय निलंबन]] के सिद्धांत पर काम करता है। जब एक विद्युत प्रवाहकीय सामग्री एक [[चुंबकीय क्षेत्र]] में चलती है, तो उस सामग्री में एक धारा (बिजली) उत्पन्न होगी जो चुंबकीय क्षेत्र में परिवर्तन का मुकाबला करती है (जिसे लेंज़ के नियम के रूप में जाना जाता है)। यह एक करंट उत्पन्न करता है जिसके परिणामस्वरूप एक चुंबकीय क्षेत्र उत्पन्न होता है जो चुंबक से एक के विपरीत उन्मुख होता है। विद्युत चालन सामग्री इस प्रकार है
[[File:amb2.svg|thumb|एकल अक्ष के लिए मूल संचालन]]घूर्णन [[विद्युत कंडक्टर]] में आवर्त धाराओं को शामिल करने के आधार पर सक्रिय [[चुंबक|चुंबकीय प्रणाली]] [[विद्युत चुम्बकीय निलंबन|विद्युत चुम्बकीय]] के सिद्धांत पर कार्य करता हैI  जब विद्युत प्रवाहकीय सामग्री [[चुंबकीय क्षेत्र]] में गतिशील होती है तो उस सामग्री में बिजली उत्पन्न होगी जो चुंबकीय क्षेत्र में परिवर्तन का मुकाबला करती है जिसे लेंज़ के नियम के रूप में जाना जाता है। इसमें इस प्रकार की विद्युत् शक्ति उत्पन्न होती है जिसके परिणामस्वरूप चुंबकीय क्षेत्र उत्पन्न होता है जो चुंबक के विपरीत उन्मुख होता है। यह विद्युत चालन सामग्री [[चुंबकीय दर्पण]] के रूप में कार्य करती है ।<ref>Basore P. A., "Passive Stabilization of Flywheel Magnetic Bearings," Master’s thesis, Massachusetts Institute of Technology (USA), 1980.</ref><ref>Murakami C. and Satoh I., “Experiments of a Very Simple Radial-Passive Magnetic Bearing Based on Eddy Currents”, In Proceedings of the 7th International Symposium on Magnetic Bearings, March 2000.</ref><ref>Bender D. and Post R. F., “Ambient Temperature Passive Magnetic Bearings for Flywheel Energy Storage Systems”, In Proceedings of the 7th International Symposium on Magnetic Bearings, March 2000.</ref><ref>Moser R., Regamey Y. J., Sandtner J., and Bleuler H., “Passive Diamagnetic Levitation for Flywheels”, In Proceedings of the 8th International Symposium on Magnetic Bearings, 2002.</ref><ref>Filatov A. V., McMullen P., Davey K., and Thompson R., “Flywheel Energy Storage System with Homopolar Electrodynamic Magnetic Bearing”, In Proceedings of the 10th International Symposium on Magnetic Bearings, 2006.</ref><ref>Sandtner J. and Bleuler H., “Electrodynamic Passive Magnetic Bearings with Planar Halbach Arrays”, In Proceedings of the 9th International Symposium on Magnetic Bearings, August 2004.</ref><ref>Sandtner J. and Bleuler H., “Passive Electrodynamic Magnetic Thrust Bearing Especially Designed for Constant Speed Applications ”, In Proceedings of the 10th International Symposium on Magnetic Bearings, August 2004.</ref><ref>Amati N., De Lépine X., and Tonoli A., “Modeling of electrodynamic Bearings”, ASME Journal of Vibration and Acoustics, 130, 2008.</ref><ref>Kluyskens V., Dehez B., “Dynamical electromechanical model for passive magnetic bearings”, IEEE Transactions on Magnetics, 43, pp 3287-3292, 2007.</ref><ref>Kluyskens V., Dehez B., “Parameterized electromechanical model for magnetic bearings with induced currents”, Journal of System Design and Dynamics - Special Issue on the Eleventh International Symposium on Magnetic Bearings, 2009.[http://www.jstage.jst.go.jp/article/jsdd/3/4/453/_pdf]{{Dead link|date=March 2020 |bot=InternetArchiveBot |fix-attempted=yes }}</ref>
एक [[चुंबकीय दर्पण]] के रूप में कार्य करना।<ref>Basore P. A., "Passive Stabilization of Flywheel Magnetic Bearings," Master’s thesis, Massachusetts Institute of Technology (USA), 1980.</ref><ref>Murakami C. and Satoh I., “Experiments of a Very Simple Radial-Passive Magnetic Bearing Based on Eddy Currents”, In Proceedings of the 7th International Symposium on Magnetic Bearings, March 2000.</ref><ref>Bender D. and Post R. F., “Ambient Temperature Passive Magnetic Bearings for Flywheel Energy Storage Systems”, In Proceedings of the 7th International Symposium on Magnetic Bearings, March 2000.</ref><ref>Moser R., Regamey Y. J., Sandtner J., and Bleuler H., “Passive Diamagnetic Levitation for Flywheels”, In Proceedings of the 8th International Symposium on Magnetic Bearings, 2002.</ref><ref>Filatov A. V., McMullen P., Davey K., and Thompson R., “Flywheel Energy Storage System with Homopolar Electrodynamic Magnetic Bearing”, In Proceedings of the 10th International Symposium on Magnetic Bearings, 2006.</ref><ref>Sandtner J. and Bleuler H., “Electrodynamic Passive Magnetic Bearings with Planar Halbach Arrays”, In Proceedings of the 9th International Symposium on Magnetic Bearings, August 2004.</ref><ref>Sandtner J. and Bleuler H., “Passive Electrodynamic Magnetic Thrust Bearing Especially Designed for Constant Speed Applications ”, In Proceedings of the 10th International Symposium on Magnetic Bearings, August 2004.</ref><ref>Amati N., De Lépine X., and Tonoli A., “Modeling of electrodynamic Bearings”, ASME Journal of Vibration and Acoustics, 130, 2008.</ref><ref>Kluyskens V., Dehez B., “Dynamical electromechanical model for passive magnetic bearings”, IEEE Transactions on Magnetics, 43, pp 3287-3292, 2007.</ref><ref>Kluyskens V., Dehez B., “Parameterized electromechanical model for magnetic bearings with induced currents”, Journal of System Design and Dynamics - Special Issue on the Eleventh International Symposium on Magnetic Bearings, 2009.[http://www.jstage.jst.go.jp/article/jsdd/3/4/453/_pdf]{{Dead link|date=March 2020 |bot=InternetArchiveBot |fix-attempted=yes }}</ref>
हार्डवेयर में एक इलेक्ट्रोमैग्नेट असेंबली, पावर एम्पलीफायरों का एक सेट होता है जो इलेक्ट्रोमैग्नेट्स को करंट की आपूर्ति करता है, एक कंट्रोलर (कंट्रोल थ्योरी) और संबंधित इलेक्ट्रॉनिक्स के साथ गैप सेंसर होता है ताकि गैप के भीतर रोटर की स्थिति को नियंत्रित करने के लिए आवश्यक फीडबैक प्रदान किया जा सके। पावर एम्पलीफायर एक रोटर के विपरीत पक्षों पर विद्युत चुम्बकों के दो जोड़े के बराबर पूर्वाग्रह की आपूर्ति करता है। इस निरंतर रस्साकशी की नियंत्रक द्वारा मध्यस्थता की जाती है, जो रोटर के केंद्र की स्थिति से विचलन के रूप में वर्तमान के समान और विपरीत गड़बड़ी से बायस करंट को ऑफसेट करता है।


गैप सेंसर आमतौर पर प्रकृति में आगमनात्मक होते हैं और डिफरेंशियल मोड में समझ में आते हैं। एक आधुनिक वाणिज्यिक अनुप्रयोग में शक्ति प्रवर्धक ठोस अवस्था उपकरण हैं जो [[पल्स चौड़ाई उतार - चढ़ाव]] कॉन्फ़िगरेशन में काम करते हैं। [[नियंत्रक (नियंत्रण सिद्धांत)]] एक [[माइक्रोप्रोसेसर]] या [[डिजिटल सिग्नल प्रोसेसर]] होता है।
मशीनरी में विद्युत् चुंबकीय शक्ति स्थापित होती है I इसमें प्रवर्धक का सेट होता है जो विद्युत चुम्बकों को बिजली की आपूर्ति करता हैI नियंत्रक 
 
संबंधित इलेक्ट्रॉनिक्स के साथ सेंसर होता है ताकि गैप के भीतर रोटर की स्थिति को नियंत्रित करने के लिए आवश्यक फीडबैक प्रदान किया जा सके। पावर एम्पलीफायर एक रोटर के विपरीत पक्षों पर विद्युत चुम्बकों के दो युग्मों के बराबर आपूर्ति करता है।
 
गैप सेंसर आमतौर पर प्रकृति में आगमनात्मक होते हैं और डिफरेंशियल मोड में समझ में आते हैं। =आधुनिक वाणिज्यिक अनुप्रयोग में शक्ति प्रवर्धक ठोस अवस्था उपकरण हैं जो [[पल्स चौड़ाई उतार - चढ़ाव]] कॉन्फ़िगरेशन में काम करते हैं। [[नियंत्रक (नियंत्रण सिद्धांत)]] एक [[माइक्रोप्रोसेसर]] या [[डिजिटल सिग्नल प्रोसेसर]] होता है।


चुंबकीय बीयरिंगों में आमतौर पर दो प्रकार की अस्थिरताएं मौजूद होती हैं। आकर्षक चुम्बक एक अस्थिर स्थैतिक बल उत्पन्न करते हैं जो बढ़ती दूरी के साथ घटता है और घटती दूरी पर बढ़ता है। इससे असर असंतुलित हो सकता है। दूसरे, क्योंकि चुम्बकत्व एक [[रूढ़िवादी बल]] है, यह थोड़ा अवमंदन प्रदान करता है; यदि कोई चालन बल मौजूद है तो दोलन सफल निलंबन के नुकसान का कारण बन सकते हैं।
चुंबकीय बीयरिंगों में आमतौर पर दो प्रकार की अस्थिरताएं मौजूद होती हैं। आकर्षक चुम्बक एक अस्थिर स्थैतिक बल उत्पन्न करते हैं जो बढ़ती दूरी के साथ घटता है और घटती दूरी पर बढ़ता है। इससे असर असंतुलित हो सकता है। दूसरे, क्योंकि चुम्बकत्व एक [[रूढ़िवादी बल]] है, यह थोड़ा अवमंदन प्रदान करता है; यदि कोई चालन बल मौजूद है तो दोलन सफल निलंबन के नुकसान का कारण बन सकते हैं।

Revision as of 20:09, 7 February 2023

एक चुंबकीय असर


चुंबकीय बेयरिंग ऐसा मशीन उपकरण है जिसका उपयोग चुंबकीय उत्तोलन के वजन को सहारा देने में होता है I चुंबकीय बेयरिंग बिना किसी भौतिक साधन के गतिमान हिस्सों को सहारा देने में अहम भूमिका निभाते हैं I वे बहुत कम घर्षण और बिना किसी यांत्रिक घर्षण के रोटरडायनामिक्स को उत्तोलित करने और सापेक्ष गति को अनुमति देने में सक्षम हैं। चुंबकीय बेयरिंग उच्चतम गति का समर्थन करते हैंI

निष्क्रिय चुंबकीय बेयरिंग में स्थाई रूप से चुंबकीय शक्ति का प्रयोग होता है I इसके लिए किसी आगत शक्ति की आवश्यकता नहीं होती है लेकिन इर्नशॉ के प्रमेय द्वारा वर्णित सीमाओं के कारण डिजाइन करना मुश्किल होता है। प्रति चुंबकत्व सामग्री का उपयोग करने वाली तकनीकें अपेक्षाकृत अविकसित हैं और दृढ़ता से भौतिक विशेषताओं पर निर्भर करती हैं। परिणाम स्वरुप अधिकांश चुंबकीय धारक विद्युत् चुंबकीय शक्ति के कारण सक्रिय होते हैं इनके वजन को स्थिर रखने के लिए निरंतर बिजली इनपुट और सक्रिय नियंत्रण प्रणाली की आवश्यकता होती है। एक संयुक्त डिजाइन में स्थायी चुम्बकों का उपयोग अक्सर स्थिर भार को ले जाने के लिए किया जाता है और सक्रिय चुंबकीय असर का उपयोग तब किया जाता है जब उत्तोलित वस्तु अपनी इष्टतम स्थिति से विचलित हो जाती है। बिजली या नियंत्रण प्रणाली की विफलता के मामले में चुंबकीय बीयरिंगों को आमतौर पर बैक-अप असर की आवश्यकता होती है।

विद्युत उत्पादन पेट्रोलियम शोधन, मशीन उपकरण संचालन और प्राकृतिक गैस हैंडलिंग जैसे कई औद्योगिक अनुप्रयोगों में चुंबकीय बीयरिंग का उपयोग किया जाता है। उनका उपयोग Zippe-type अपकेंद्रित्र में भी किया जाता हैI[1] यूरेनियम संवर्धन और टर्बोमोलेक्युलर पंप चिकनाई वाले बेयरिंग संदूषण का स्रोत हैं।

डिजाइन

एकल अक्ष के लिए मूल संचालन

घूर्णन विद्युत कंडक्टर में आवर्त धाराओं को शामिल करने के आधार पर सक्रिय चुंबकीय प्रणाली विद्युत चुम्बकीय के सिद्धांत पर कार्य करता हैI जब विद्युत प्रवाहकीय सामग्री चुंबकीय क्षेत्र में गतिशील होती है तो उस सामग्री में बिजली उत्पन्न होगी जो चुंबकीय क्षेत्र में परिवर्तन का मुकाबला करती है जिसे लेंज़ के नियम के रूप में जाना जाता है। इसमें इस प्रकार की विद्युत् शक्ति उत्पन्न होती है जिसके परिणामस्वरूप चुंबकीय क्षेत्र उत्पन्न होता है जो चुंबक के विपरीत उन्मुख होता है। यह विद्युत चालन सामग्री चुंबकीय दर्पण के रूप में कार्य करती है ।[2][3][4][5][6][7][8][9][10][11]

मशीनरी में विद्युत् चुंबकीय शक्ति स्थापित होती है I इसमें प्रवर्धक का सेट होता है जो विद्युत चुम्बकों को बिजली की आपूर्ति करता हैI नियंत्रक

संबंधित इलेक्ट्रॉनिक्स के साथ सेंसर होता है ताकि गैप के भीतर रोटर की स्थिति को नियंत्रित करने के लिए आवश्यक फीडबैक प्रदान किया जा सके। पावर एम्पलीफायर एक रोटर के विपरीत पक्षों पर विद्युत चुम्बकों के दो युग्मों के बराबर आपूर्ति करता है।

गैप सेंसर आमतौर पर प्रकृति में आगमनात्मक होते हैं और डिफरेंशियल मोड में समझ में आते हैं। =आधुनिक वाणिज्यिक अनुप्रयोग में शक्ति प्रवर्धक ठोस अवस्था उपकरण हैं जो पल्स चौड़ाई उतार - चढ़ाव कॉन्फ़िगरेशन में काम करते हैं। नियंत्रक (नियंत्रण सिद्धांत) एक माइक्रोप्रोसेसर या डिजिटल सिग्नल प्रोसेसर होता है।

चुंबकीय बीयरिंगों में आमतौर पर दो प्रकार की अस्थिरताएं मौजूद होती हैं। आकर्षक चुम्बक एक अस्थिर स्थैतिक बल उत्पन्न करते हैं जो बढ़ती दूरी के साथ घटता है और घटती दूरी पर बढ़ता है। इससे असर असंतुलित हो सकता है। दूसरे, क्योंकि चुम्बकत्व एक रूढ़िवादी बल है, यह थोड़ा अवमंदन प्रदान करता है; यदि कोई चालन बल मौजूद है तो दोलन सफल निलंबन के नुकसान का कारण बन सकते हैं।

इतिहास

नीचे दी गई तालिका सक्रिय चुंबकीय बीयरिंगों के लिए कई शुरुआती पेटेंट सूचीबद्ध करती है। चुंबकीय निलंबन के लिए पहले के पेटेंट पाए जा सकते हैं लेकिन उन्हें यहां से बाहर रखा गया है क्योंकि वे अर्नशॉ के प्रमेय के अनुसार समस्याग्रस्त स्थिरता के स्थायी चुम्बकों की विधानसभाओं से मिलकर बने हैं।

Early U.S. patents in active magnetic bearings
Inventor(s) Year Patent number Title
Beams, Holmes 1941 2,256,937 Suspension of Rotatable Bodies
Beams 1954 2,691,306 Magnetically Supported Rotating Bodies
Gilbert 1955 2,946,930 Magnetic suspension
Beams 1962 3,041,482 Apparatus for Rotating Freely Suspended Bodies
Beams 1965 3,196,694 Magnetic Suspension System
Wolf 1967 3,316,032 Poly-Phase Magnetic Suspension Transformer
Boden et al. 1968 DE1750602 Magnetische Lagerung (German patent)
Lyman 1971 3,565,495 Magnetic Suspension Apparatus
Habermann 1973 3,731,984 Magnetic Bearing Block Device for Supporting a Vertical Shaft Adapted for Rotating at High Speed
Habermann, Loyen, Joli, Aubert 1974 3,787,100 Devices Including Rotating Members Supported by Magnetic Bearings
Habermann, Brunet 1977 4,012,083 Magnetic Bearings
Habermann, Brunet, LeClére 1978 4,114,960 Radial Displacement Detector Device for a Magnetic Bearings
Croot, Estelle 1990 1,988,024,350 Further Improvements in Magnetic Bearings
Meeks, Crawford R 1992 5,111,102 Bearing Structure
Croot, Estelle 1994 1,991,075,982 Non-linear Magnetic Bearing

वर्जीनिया विश्वविद्यालय से जेसी बीम्स ने कुछ शुरुआती सक्रिय चुंबकीय असर पेटेंट दायर किए[12][13] द्वितीय विश्व युद्ध के दौरान। मैनहट्टन परियोजना के लिए आवश्यक तत्वों के समस्थानिकों के संवर्धन के उद्देश्य से किए गए पेटेंट ultracentrifuge से संबंधित हैं। हालांकि, हैबरमैन के काम के साथ ठोस-राज्य इलेक्ट्रॉनिक्स और आधुनिक कंप्यूटर-आधारित नियंत्रण प्रौद्योगिकी में प्रगति होने तक चुंबकीय बीयरिंग परिपक्व नहीं हुए।[14] और श्विट्जर।[15] 1987 में, एस्टेले क्रोट ने सक्रिय चुंबकीय असर प्रौद्योगिकी में और सुधार किया,[16] लेकिन इन डिजाइनों को उत्पादन की महंगी लागत के कारण निर्मित नहीं किया गया था, जिसमें लेजर मार्गदर्शन प्रणाली का उपयोग किया गया था। एस्टेले क्रोट का शोध तीन ऑस्ट्रेलियाई पेटेंट [4] का विषय था और इसे नाची फुजिकोशी, निप्पॉन सेइको केके और हिताची द्वारा वित्त पोषित किया गया था और उनकी गणना का उपयोग किया गया था। अन्य प्रौद्योगिकियों में जो दुर्लभ-पृथ्वी चुंबक का उपयोग करते थे लेकिन सक्रिय चुंबकीय बीयरिंग केवल प्रोटोटाइप चरण तक ही विकसित किए गए थे। क्रोट का[17] डिज़ाइन में एक उन्नत कम्प्यूटरीकृत नियंत्रण प्रणाली भी शामिल थी, जबकि अंतिम डिज़ाइन एक गैर-रैखिक चुंबकीय असर था।

कसरदा[18] गहराई में सक्रिय चुंबकीय बीयरिंगों के इतिहास की समीक्षा करता है। वह नोट करती है कि सक्रिय चुंबकीय बीयरिंगों का पहला व्यावसायिक अनुप्रयोग टर्बोमशीनरी में था। सक्रिय चुंबकीय असर ने अल्बर्टा, कनाडा में नोवा गैस ट्रांसमिशन लिमिटेड (एनजीटीएल) गैस पाइपलाइनों के लिए कंप्रेशर्स पर तेल जलाशयों को खत्म करने की अनुमति दी। इसने आग के खतरे को कम कर दिया जिससे बीमा लागत में काफी कमी आई। इन चुंबकीय असर प्रतिष्ठानों की सफलता ने एनजीटीएल को अमेरिकी कंपनी मैग्नेटिक बियरिंग्स इंक द्वारा आपूर्ति की गई एनालॉग कंट्रोल सिस्टम के प्रतिस्थापन के रूप में एक डिजिटल चुंबकीय असर नियंत्रण प्रणाली के अनुसंधान और विकास का नेतृत्व करने के लिए प्रेरित किया। 1992 में, एनजीटीएल के चुंबकीय असर अनुसंधान समूह ने कंपनी का गठन किया। रिवॉल्व टेक्नोलॉजीज इंक। कंपनी को बाद में स्वीडन के एसकेएफ ने खरीदा था। फ्रांसीसी कंपनी S2M, जिसकी स्थापना 1976 में हुई थी, सक्रिय चुंबकीय बीयरिंगों का व्यावसायिक रूप से विपणन करने वाली पहली कंपनी थी। रोटेटिंग मशीनरी एंड कंट्रोल्स इंडस्ट्रियल रिसर्च प्रोग्राम [5] में वर्जीनिया विश्वविद्यालय में चुंबकीय बीयरिंग पर व्यापक शोध जारी है।

1996 में शुरू होने वाले दशक के दौरान, डच तेल और गैस कंपनी NAM ने बीस गैस कंप्रेशर्स स्थापित किए, जिनमें से प्रत्येक 23-मेगावाट चर-गति-ड्राइव इलेक्ट्रिक मोटर द्वारा संचालित था। प्रत्येक इकाई मोटर और कंप्रेसर दोनों पर सक्रिय चुंबकीय बीयरिंगों से पूरी तरह सुसज्जित थी। इस बड़े गैस क्षेत्र से शेष गैस निकालने और क्षेत्र की क्षमता बढ़ाने के लिए इन कंप्रेशर्स का उपयोग ग्रोनिंगन गैस क्षेत्र में किया जाता है। मोटर-कंप्रेसर डिजाइन सीमेंस द्वारा किया गया था और सक्रिय चुंबकीय बीयरिंग वौकेशा बियरिंग्स कॉर्पोरेशन (डोवर निगम के स्वामित्व वाले) द्वारा वितरित किए गए थे। (मूल रूप से इन बीयरिंगों को ग्लेशियर द्वारा डिजाइन किया गया था, इस कंपनी को बाद में फेडरल मोगुल द्वारा ले लिया गया था और अब वौकेशा बियरिंग्स का हिस्सा है।) सक्रिय चुंबकीय बीयरिंगों और मोटर और कंप्रेसर के बीच एक सीधी ड्राइव (बीच में गियरबॉक्स के बिना) का उपयोग करके और द्वारा ड्राई गैस सील लगाने से पूरी तरह से ड्राई-ड्राई (ऑयल-फ्री) सिस्टम हासिल किया गया। चालक और कंप्रेसर दोनों में सक्रिय चुंबकीय बीयरिंगों को लागू करने (गियर और बॉल बेयरिंग का उपयोग करने वाले पारंपरिक कॉन्फ़िगरेशन की तुलना में) के परिणामस्वरूप अपेक्षाकृत सरल प्रणाली होती है, जिसमें बहुत व्यापक ऑपरेटिंग रेंज और उच्च क्षमता होती है, विशेष रूप से आंशिक लोड पर। जैसा कि ग्रोनिंगन क्षेत्र में किया गया था, एक बड़े कंप्रेसर भवन की आवश्यकता के बिना पूर्ण स्थापना को अतिरिक्त रूप से बाहर रखा जा सकता है।

इलेक्ट्रोमोटिव स्थिरीकरण के साथ गैर-संपर्क स्थायी चुंबक बीयरिंग को 1955 में आर. जी. गिल्बर्ट द्वारा पेटेंट के लिए लागू किया गया था (यू.एस. पेटेंट 2,946,930) [19] और 1968 में के. बोडेन, डी. शेफ़र (जर्मन पेटेंट 1750602)।[20] ये आविष्कार कई व्यावहारिक अनुप्रयोगों के लिए तकनीकी आधार प्रदान करते हैं, जिनमें से कुछ 1980 के बाद से Forschungszentrum Jülich से लाइसेंस के तहत औद्योगिक श्रृंखला उत्पादन के चरण तक पहुंच गए हैं।[21][22] मीक्स[23] अग्रणी संकर चुंबकीय असर डिजाइन (यूएस पेटेंट 5,111,102) जिसमें स्थायी चुंबक पूर्वाग्रह क्षेत्र प्रदान करते हैं और सक्रिय नियंत्रण कॉइल्स स्थिरता और गतिशील नियंत्रण के लिए उपयोग किए जाते हैं। पूर्वाग्रह क्षेत्रों के लिए स्थायी चुम्बकों का उपयोग करने वाले ये डिज़ाइन विशुद्ध रूप से विद्युत चुम्बकीय बीयरिंगों की तुलना में छोटे और हल्के वजन के होते हैं। इलेक्ट्रॉनिक नियंत्रण प्रणाली भी छोटी है और कम विद्युत शक्ति की आवश्यकता होती है क्योंकि पूर्वाग्रह क्षेत्र स्थायी चुंबक द्वारा प्रदान किया जाता है।

जैसे-जैसे आवश्यक घटकों का विकास हुआ, क्षेत्र में वैज्ञानिक रुचि भी बढ़ी, 1988 में ज्यूरिख में आयोजित चुंबकीय बियरिंग्स पर पहले अंतर्राष्ट्रीय संगोष्ठी में प्रो. श्वित्जर (ETHZ) द्वारा इंटरनेशनल सोसाइटी ऑफ मैग्नेटिक बियरिंग्स की स्थापना के साथ शिखर पर पहुंच गया। अलाइरे (वर्जीनिया विश्वविद्यालय), और प्रो. ओकाडा (इबाराकी विश्वविद्यालय)। तब से, संगोष्ठी एक द्विवार्षिक सम्मेलन श्रृंखला में चुंबकीय असर प्रौद्योगिकी पर एक स्थायी पोर्टल के साथ विकसित हुई है Bearings.org जहां सभी संगोष्ठी योगदान उपलब्ध कराए जाते हैं। वेब पोर्टल अंतरराष्ट्रीय अनुसंधान और औद्योगिक समुदाय द्वारा समर्थित है। 2012 में हॉल ऑफ फेम में शामिल होने और लाइफटाइम अचीवमेंट पुरस्कार अर्जित करने वाले थे प्रो. योहजी ओकाडा, प्रो. गेरहार्ड श्वाइट्जर, और वौकेशा मैग्नेटिक बियरिंग्स के माइकल स्वान Bearings.org/?page_id=1132

अनुप्रयोग

चुंबकीय असर के फायदों में बहुत कम और पूर्वानुमेय घर्षण, और स्नेहन के बिना और निर्वात में चलने की क्षमता शामिल है। कम्प्रेसर, टर्बाइन, पंप, मोटर और जनरेटर जैसी औद्योगिक मशीनों में चुंबकीय बीयरिंग का तेजी से उपयोग किया जाता है।

घरेलू बिजली की खपत को मापने के लिए विद्युत उपयोगिताओं द्वारा वाट-घंटे मीटर में आमतौर पर चुंबकीय बीयरिंग का उपयोग किया जाता है। उनका उपयोग ऊर्जा भंडारण या परिवहन अनुप्रयोगों में और वैक्यूम में उपकरण का समर्थन करने के लिए भी किया जाता है, उदाहरण के लिए चक्का ऊर्जा भंडारण प्रणालियों में।[24] [25] निर्वात में एक फ्लाईव्हील में हवा प्रतिरोध का बहुत कम नुकसान होता है, लेकिन पारंपरिक बीयरिंग आमतौर पर खराब स्नेहन के कारण निर्वात में जल्दी विफल हो जाते हैं। भौतिक संपर्क सतहों को समाप्त करके कम शोर और चिकनी सवारी प्राप्त करने के लिए मैग्लेव ट्रेनों का समर्थन करने के लिए चुंबकीय बीयरिंग का भी उपयोग किया जाता है। नुकसान में उच्च लागत, भारी वजन और अपेक्षाकृत बड़े आकार शामिल हैं।

चिलर्स के लिए कुछ केन्द्रापसारक कम्प्रेसर में चुंबकीय बीयरिंगों का उपयोग चुंबकीय बीयरिंगों के बीच चुंबकीय सामग्री से बने शाफ्ट के साथ भी किया जाता है। धारा की एक छोटी मात्रा शाफ्ट को चुंबकीय उत्तोलन प्रदान करती है जो असर और शाफ्ट के बीच शून्य घर्षण सुनिश्चित करते हुए हवा में स्वतंत्र रूप से निलंबित रहती है।

अर्धचालक उत्पादन संयंत्रों में वैक्यूम उत्पादन के लिए सबसे महत्वपूर्ण औद्योगिक अनुप्रयोगों में टर्बोमोलेक्युलर पंप हैं। 1975 में (विद्युत चुम्बकीय) और 1989 में (स्थायी चुंबक आधारित) लेयबोल्ड एजी द्वारा यांत्रिक स्थिरीकरण के बिना पहले वाणिज्यिक चुंबकीय असर प्रकार टर्बोपंप का विपणन किया गया था।

वैक्यूम मेट्रोलॉजी के क्षेत्र में स्पिनिंग रोटर गेज (SRG) को BIPM, पेरिस 1979 द्वारा एक संदर्भ मानक के रूप में पेश किया गया था। इस गेज की पहली प्रयोगशाला सेटअप 1946 में जेसी बीम्स द्वारा स्थापित की गई थी। वाणिज्यिक श्रृंखला उत्पादन Forschungszentrum Jülich के लाइसेंस के तहत 1980 में शुरू हुआ। सेमीकंडक्टर निर्माण उपकरण में वैक्यूम प्रक्रिया नियंत्रण के लिए एसआरजी महत्वपूर्ण है।

कृत्रिम दिल में चुंबकीय बीयरिंग का एक नया अनुप्रयोग है। वेंट्रिकुलर सहायक उपकरणों में चुंबकीय निलंबन का उपयोग वर्जीनिया विश्वविद्यालय में प्रोफेसर पॉल अलाइरे और प्रोफेसर ह्यूस्टन वुड द्वारा किया गया था, जो 1999 में पहले चुंबकीय रूप से निलंबित वेंट्रिकुलर असिस्ट केन्द्रापसारक कंप्रेसर (वेंट्रिकुलर असिस्ट डिवाइस) में समाप्त हुआ था।[citation needed] कई वेंट्रिकुलर असिस्ट डिवाइस लाइफफ्लो हार्ट पंप सहित चुंबकीय बियरिंग का उपयोग करते हैं,[26] ड्यूराहार्ट लेफ्ट वेंट्रिकुलर असिस्ट सिस्टम,[27] लेविट्रोनिक्स सेंट्रीमैग,[28] और बर्लिन हार्ट[29] इन उपकरणों में, द्रव गतिशील असर और चुंबकीय बल के संयोजन से एकल चलती भाग को निलंबित कर दिया जाता है। भौतिक संपर्क सतहों को समाप्त करके, चुंबकीय बीयरिंग इन रक्त पंपों में उच्च कतरनी तनाव (जो लाल रक्त कोशिका क्षति की ओर जाता है) और प्रवाह ठहराव (जिससे थक्का बनने की ओर जाता है) के क्षेत्रों को कम करना आसान बनाता है।[30] बर्लिन हार्ट INCOR यांत्रिक या द्रव गतिशील स्थिरीकरण के बिना पहला व्यावसायिक वेंट्रिकुलर सहायक उपकरण था।

Calnetix Technologies, सिंक्रोनी मैग्नेटिक बियरिंग्स (जॉनसन कंट्रोल्स इंटरनेशनल की सहायक कंपनी), वौकेशा मैग्नेटिक बियरिंग्स, और S2M (SKF की सहायक कंपनी) दुनिया भर में प्रमुख चुंबकीय असर डेवलपर्स और निर्माताओं में से हैं।

भविष्य अग्रिम

एक अक्षीय एकध्रुवीय इलेक्ट्रोडायनामिक असर

मैग्लेव (परिवहन) प्रौद्योगिकियों जैसे कि इंडकट्रैक सिस्टम में मौजूद एक प्रेरण-आधारित लेविटेशन सिस्टम के उपयोग के साथ, चुंबकीय बीयरिंग हेलबैक एरे और सरल बंद लूप कॉइल का उपयोग करके जटिल नियंत्रण प्रणाली को बदल सकते हैं। ये प्रणालियाँ सादगी में लाभ उठाती हैं, लेकिन एड़ी के मौजूदा नुकसान के संबंध में कम लाभप्रद हैं। रोटरडायनामिक्स के लिए बहुध्रुवीय हलबैक संरचनाओं के बजाय एकध्रुवीय चुंबक डिजाइन का उपयोग करना संभव है, जो नुकसान को काफी कम करता है।

एक उदाहरण जिसने अर्नशॉ के प्रमेय के मुद्दों को दरकिनार कर दिया है, वह डॉ टोरबजोर्न लेम्बके द्वारा आविष्कृत होमोपोलर इलेक्ट्रोडायनामिक बियरिंग है।[31][32][33] यह एक निष्क्रिय चुंबकीय तकनीक पर आधारित एक उपन्यास प्रकार का विद्युत चुम्बकीय असर है। इसे संचालित करने और काम करने के लिए किसी नियंत्रण इलेक्ट्रॉनिक्स की आवश्यकता नहीं होती है क्योंकि गति से उत्पन्न विद्युत धाराएं एक पुनर्स्थापना बल का कारण बनती हैं।[34][35][36]


यह भी देखें

संदर्भ

  1. Charles, D., Spinning a Nuclear Comeback, Science, Vol. 315, (30 March 2007)
  2. Basore P. A., "Passive Stabilization of Flywheel Magnetic Bearings," Master’s thesis, Massachusetts Institute of Technology (USA), 1980.
  3. Murakami C. and Satoh I., “Experiments of a Very Simple Radial-Passive Magnetic Bearing Based on Eddy Currents”, In Proceedings of the 7th International Symposium on Magnetic Bearings, March 2000.
  4. Bender D. and Post R. F., “Ambient Temperature Passive Magnetic Bearings for Flywheel Energy Storage Systems”, In Proceedings of the 7th International Symposium on Magnetic Bearings, March 2000.
  5. Moser R., Regamey Y. J., Sandtner J., and Bleuler H., “Passive Diamagnetic Levitation for Flywheels”, In Proceedings of the 8th International Symposium on Magnetic Bearings, 2002.
  6. Filatov A. V., McMullen P., Davey K., and Thompson R., “Flywheel Energy Storage System with Homopolar Electrodynamic Magnetic Bearing”, In Proceedings of the 10th International Symposium on Magnetic Bearings, 2006.
  7. Sandtner J. and Bleuler H., “Electrodynamic Passive Magnetic Bearings with Planar Halbach Arrays”, In Proceedings of the 9th International Symposium on Magnetic Bearings, August 2004.
  8. Sandtner J. and Bleuler H., “Passive Electrodynamic Magnetic Thrust Bearing Especially Designed for Constant Speed Applications ”, In Proceedings of the 10th International Symposium on Magnetic Bearings, August 2004.
  9. Amati N., De Lépine X., and Tonoli A., “Modeling of electrodynamic Bearings”, ASME Journal of Vibration and Acoustics, 130, 2008.
  10. Kluyskens V., Dehez B., “Dynamical electromechanical model for passive magnetic bearings”, IEEE Transactions on Magnetics, 43, pp 3287-3292, 2007.
  11. Kluyskens V., Dehez B., “Parameterized electromechanical model for magnetic bearings with induced currents”, Journal of System Design and Dynamics - Special Issue on the Eleventh International Symposium on Magnetic Bearings, 2009.[1][permanent dead link]
  12. Beams, J. , Production and Use of High Centrifugal Fields, Science, Vol. 120, (1954)
  13. Beams, J. , Magnetic Bearings, Paper 810A, Automotive Engineering Conference, Detroit, Michigan, USA, SAE (Jan. 1964)
  14. Habermann, H. , Liard, G. Practical Magnetic Bearings , IEEE Spectrum, Vol. 16, No. 9, (September 1979)
  15. Schweitzer, G. , Characteristics of a Magnetic Rotor Bearing for Active Vibration Control, Paper C239/76, First International Conference on Vibrations in Rotating Machinery, (1976)
  16. Estelle Croot, Australian Inventors Weekly, NSW Inventors Association, Vol. 3, (April 1987)
  17. Sawsan Ahmed Elhouri Ahmed, Nuha Abdallah Mohammed Babker & Mohamed Toum Fadel, "A Study on Classes of Magnetism," IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 6 Issue 4, 2348 – 7968, (2019).
  18. Kasarda, M. An Overview of Active Magnetic Bearing Technology and Applications, The Shock and Vibration Digest, Vol.32, No. 2: A Publication of the Shock and Vibration Information Center, Naval Research Laboratory, (March 2000)
  19. R. G. Gilbert, "Magnetic suspension" [2] 1955
  20. K. Boden, D. Scheffer, "Magnetische Lagerung" [3] 1968
  21. Johan K. Fremerey, "Permanentmagnetische Lager", November 2000 (in German)
  22. Johan K. Fremerey, "Permanent magnet bearings", March 2019
  23. Meeks, C.R., "Magnetic Bearings - Optimum Design and Application", Paper presented at the International Workshop on Rare Earth Cobalt Permanent Magnets, University of Dayton, Dayton, Ohio, October 14–17, 1974
  24. Johan K. Fremerey and Michael Kolk (1999) "A 500-Wh power flywheel on permanent magnet bearings"
  25. Li, Xiaojun; Anvari, Bahar; Palazzolo, Alan; Wang, Zhiyang; Toliyat, Hamid (2018-08-14). "A Utility Scale Flywheel Energy Storage System with a Shaftless, Hubless, High Strength Steel Rotor". IEEE Transactions on Industrial Electronics. 65 (8): 6667–6675. doi:10.1109/TIE.2017.2772205. S2CID 4557504.
  26. "Recent work on the LifeFlow heart pump". Linz Center of Mechatronics GmbH.
  27. Smart, Frank. "Magnetic levitation heart pump implanted in first U.S. patient". "Cardiology Today". October 2008.
  28. Hoshi, H; Shinshi, T; Takatani, S (2006). "Third-generation Blood Pumps with Mechanical Noncontact Magnetic Bearings". Artificial Organs. 30 (5): 324–338. doi:10.1111/j.1525-1594.2006.00222.x. PMID 16683949.
  29. March 10, 2004, "Jülich Magnetic Bearings in Cardiac Surgery"
  30. "Biological Systems - Heart Assist Pump" Archived 2016-10-08 at the Wayback Machine. Aerospace Research Laboratory. University of Virginia.
  31. "Design and Analysis of a Novel Low Loss Homopolar Electrodynamic Bearing." Lembke, Torbjörn. PhD Thesis. Stockholm: Universitetsservice US AB, 2005. ISBN 91-7178-032-7
  32. "3D-FEM Analysis of a Low Loss Homopolar Induction Bearing" Archived 2011-06-08 at the Wayback Machine Lembke, Torbjörn. 9th International Symposium on Magnetic Bearings (ISMB9). Aug. 2004.
  33. Seminar at KTH – the Royal Institute of Technology Stockholm. Feb 24. 2010
  34. Amati, N., Tonoli, A., Zenerino, E., Detoni, J. G., Impinna, F., "Design Methodology of Electrodynamic Bearings", XXXVIII Associazione Italiana per l'Analisi delle Solecitazioni, Convegno Nazionale, No. 109, 2009
  35. Filatov, A. V., Maslen, E. H., and Gillies, G. T., "A Method of Suspension of Rotating Bodies Using Electromagnetic Forces", Journal of Applied Physics, Vol. 91
  36. Filatov, A. V., Maslen, E. H., and Gillies, G. T., "Stability of an Electrodynamic Suspension" Journal of Applied Physics, Vol. 92 (2002), pp. 3345-3353.


अग्रिम पठन


बाहरी संबंध