डिफ्यूज़ रिफ्लेक्शन स्पेक्ट्रोस्कोपी: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
डिफ्यूज़ रिफ्लेक्शन स्पेक्ट्रोस्कोपी, या डिफ्यूज़ रिफ्लेक्शन स्पेक्ट्रोस्कोपी, [[अवशोषण स्पेक्ट्रोस्कोपी]] का उप-समुच्चय है। इसे कभी-कभी रिमिशन स्पेक्ट्रोस्कोपी कहा जाता है। विमुद्रीकरण परावर्तन (भौतिकी) या किसी | डिफ्यूज़ रिफ्लेक्शन स्पेक्ट्रोस्कोपी, या डिफ्यूज़ रिफ्लेक्शन स्पेक्ट्रोस्कोपी, [[अवशोषण स्पेक्ट्रोस्कोपी]] का उप-समुच्चय है। इसे कभी-कभी रिमिशन स्पेक्ट्रोस्कोपी कहा जाता है। विमुद्रीकरण परावर्तन (भौतिकी) या किसी पदार्थसामग्री द्वारा प्रकाश का [[बैक-बिखरने|पश्च प्रकीर्णन]] है, जबकि संचरण पदार्थसामग्री के माध्यम से प्रकाश का मार्ग है। ''छूट'' शब्द का तात्पर्य बिखराव की दिशा से है, जो बिखरने की प्रक्रिया से स्वतंत्र है। विमुद्रीकरण में स्पेक्युलर और डिफ्यूज़ली पश्च प्रकीर्णन [[रोशनी|प्रकाश]] दोनों शामिल हैं। 'परावर्तन' शब्द का अर्थ अक्सर विशेष शारीरिक प्रक्रिया, जैसे स्पेक्युलर [[प्रतिबिंब|परावर्तन]] होता है। | ||
''रिमिशन स्पेक्ट्रोस्कोपी'' शब्द का उपयोग अपेक्षाकृत हाल ही में हुआ है, और दवा और जैव रसायन से संबंधित अनुप्रयोगों में इसका पहला उपयोग पाया गया है। जबकि अवशोषण स्पेक्ट्रोस्कोपी के कुछ क्षेत्रों में यह शब्द अधिक सामान्य होता जा रहा है, शब्द ''प्रकीर्णन परावर्तन'' दृढ़ता से फैला हुआ है, जैसा कि प्रकीर्णन परावर्तन अवरक्त फूरियर ट्रांसफॉर्म स्पेक्ट्रोस्कोपी (डीआरआईएफटीएस) और प्रकीर्णन-परावर्तन पराबैंगनी-दृश्यमान स्पेक्ट्रोस्कोपी में है। | ''रिमिशन स्पेक्ट्रोस्कोपी'' शब्द का उपयोग अपेक्षाकृत हाल ही में हुआ है, और दवा और जैव रसायन से संबंधित अनुप्रयोगों में इसका पहला उपयोग पाया गया है। जबकि अवशोषण स्पेक्ट्रोस्कोपी के कुछ क्षेत्रों में यह शब्द अधिक सामान्य होता जा रहा है, शब्द ''प्रकीर्णन परावर्तन'' दृढ़ता से फैला हुआ है, जैसा कि प्रकीर्णन परावर्तन अवरक्त फूरियर ट्रांसफॉर्म स्पेक्ट्रोस्कोपी (डीआरआईएफटीएस) और प्रकीर्णन-परावर्तन पराबैंगनी-दृश्यमान स्पेक्ट्रोस्कोपी में है। | ||
== विसरित परावर्तन और संप्रेषण से संबंधित गणितीय उपचार == | == विसरित परावर्तन और संप्रेषण से संबंधित गणितीय उपचार == | ||
बिखरने वाली | बिखरने वाली पदार्थसामग्री के लिए अवशोषण स्पेक्ट्रोस्कोपी के गणितीय उपचार मूल रूप से बड़े पैमाने पर अन्य क्षेत्रों से उधार लिए गए थे। सबसे सफल उपचार नमूने को परतों में विभाजित करने की अवधारणा का उपयोग करते हैं, जिसे समतल समानांतर परतें कहा जाता है। वे आम तौर पर दो-प्रवाह या [[दो-धारा सन्निकटन]] के अनुरूप होते हैं। कुछ उपचारों के लिए सभी बिखरे हुए प्रकाश की आवश्यकता होती है, दोनों प्रेषित और प्रसारित प्रकाश, मापने के लिए। अन्य केवल प्रेषित प्रकाश पर लागू होते हैं, इस धारणा के साथ कि नमूना असीम रूप से मोटा है और कोई प्रकाश प्रसारित नहीं करता है। ये अधिक सामान्य उपचारों के विशेष मामले हैं। | ||
[[प्रतिनिधि परत सिद्धांत]] से संबंधित कई सामान्य उपचार हैं, जिनमें से सभी दूसरे के साथ संगत हैं। वे स्टोक्स सूत्र हैं,<ref>{{cite journal |last1=Stokes |first1=George |title=On the intensity of the light reflected from or transmitted through a pile of plates |journal=Proceedings of the Royal Society of London |date=1862 |volume=11 |pages=545–556 |doi=10.1098/rspl.1860.0119|doi-access=free }}</ref> बेनफोर्ड के समीकरण,<ref name="Benford">{{cite journal |last1=Benford |first1=Frank |title=Radiation in a Diffusing Medium |journal=Journal of the Optical Society of America |date=1946 |volume=36 |issue=9|pages=524–554 |doi=10.1364/JOSA.36.000524 |pmid=21002043 }}</ref> हेच परिमित अंतर सूत्र,<ref name="HechtJ">{{cite journal |last1=Hecht |first1=Harry |title=The Interpretation of Diffuse Reflectance Spectra |journal=Journal of Research of the National Bureau of Standards Section A |date=1976 |volume=80A |issue=4 |pages=567–583 |doi=10.6028/jres.080A.056|pmid=32196278 |pmc=5293523 |doi-access=free }}</ref> और दाहम समीकरण।<ref name="DahmJ1">{{cite journal |last1=Dahm |first1=Donald |title=Representative Layer Theory for Diffuse Reflectance |journal=Applied Spectroscopy |date=1999 |volume=53 |issue=6 |pages=647–654 |doi=10.1366/0003702991947298|bibcode=1999ApSpe..53..647D |s2cid=96885077 }}</ref><ref name="Griffiths" /> अपरिमेय परतों के विशेष मामले के लिए, कुबेल्का-मंक<ref name="KM1">{{cite journal |last1=Kubelka |first1=Paul |title=Ein Beitrag zur Optik der Farbanstriche |journal=Zeits. F. Techn. Physik |date=1931 |volume=12 |pages=593–601 |url=http://www.graphics.cornell.edu/~westin/pubs/kubelka.pdf}}</ref> और शूस्टर-गुस्ताव कोर्तम|माय कोर्तम<ref name="Schuster">{{cite journal |last1=Schuster |first1=Aurhur |title=Radiation through a foggy atmosphere |journal=Astrophysical Journal |date=1905 |volume=21 |issue=1 |pages=1–22 |doi=10.1086/141186|bibcode=1905ApJ....21....1S }}</ref><ref name="Kortuem">{{Cite book |title=Reflectance spectroscopy Principles, methods, applications |last=Kortüm |first= Gustav |date=1969 |publisher=Springer |isbn=9783642880711 |location=Berlin |oclc=714802320}}</ref> उपचार भी संगत परिणाम देते हैं। जिन उपचारों में विभिन्न धारणाएँ शामिल होती हैं और जो असंगत परिणाम देते हैं, वे जियोवानेली हैं<ref name="Reflection by semi-infinite diffuse">{{cite journal |last1=Giovanelli |first1=Ronald |title=Reflection by semi-infinite diffusers |journal=Optica Acta |date=1955 |volume=2 |issue=4 |pages=153–162|doi=10.1080/713821040 |bibcode=1955AcOpt...2..153G }}</ref> सटीक समाधान, और मेलमेड के कण सिद्धांत<ref>{{cite journal |last1=Melamed |first1=N T |title=Optical properties of powders. Part I. Optical absorption coefficients and the absolute value of the diffuse reflectance |journal=Journal of Applied Physics |date=1963 |volume=34 |page=560 |doi=10.1063/1.1729309}}</ref> और सीमन्स।<ref name="SimmonsP">{{cite journal |last1=Simmons |first1=E L |title=Modification of the particle−model theory of diffuse reflectance properties of powdered samples |journal=Journal of Applied Physics |date=1975 |volume=46 |issue=1 |page=344 |doi=10.1063/1.321341|bibcode=1975JAP....46..344S }}</ref> | [[प्रतिनिधि परत सिद्धांत]] से संबंधित कई सामान्य उपचार हैं, जिनमें से सभी दूसरे के साथ संगत हैं। वे स्टोक्स सूत्र हैं,<ref>{{cite journal |last1=Stokes |first1=George |title=On the intensity of the light reflected from or transmitted through a pile of plates |journal=Proceedings of the Royal Society of London |date=1862 |volume=11 |pages=545–556 |doi=10.1098/rspl.1860.0119|doi-access=free }}</ref> बेनफोर्ड के समीकरण,<ref name="Benford">{{cite journal |last1=Benford |first1=Frank |title=Radiation in a Diffusing Medium |journal=Journal of the Optical Society of America |date=1946 |volume=36 |issue=9|pages=524–554 |doi=10.1364/JOSA.36.000524 |pmid=21002043 }}</ref> हेच परिमित अंतर सूत्र,<ref name="HechtJ">{{cite journal |last1=Hecht |first1=Harry |title=The Interpretation of Diffuse Reflectance Spectra |journal=Journal of Research of the National Bureau of Standards Section A |date=1976 |volume=80A |issue=4 |pages=567–583 |doi=10.6028/jres.080A.056|pmid=32196278 |pmc=5293523 |doi-access=free }}</ref> और दाहम समीकरण।<ref name="DahmJ1">{{cite journal |last1=Dahm |first1=Donald |title=Representative Layer Theory for Diffuse Reflectance |journal=Applied Spectroscopy |date=1999 |volume=53 |issue=6 |pages=647–654 |doi=10.1366/0003702991947298|bibcode=1999ApSpe..53..647D |s2cid=96885077 }}</ref><ref name="Griffiths" /> अपरिमेय परतों के विशेष मामले के लिए, कुबेल्का-मंक<ref name="KM1">{{cite journal |last1=Kubelka |first1=Paul |title=Ein Beitrag zur Optik der Farbanstriche |journal=Zeits. F. Techn. Physik |date=1931 |volume=12 |pages=593–601 |url=http://www.graphics.cornell.edu/~westin/pubs/kubelka.pdf}}</ref> और शूस्टर-गुस्ताव कोर्तम|माय कोर्तम<ref name="Schuster">{{cite journal |last1=Schuster |first1=Aurhur |title=Radiation through a foggy atmosphere |journal=Astrophysical Journal |date=1905 |volume=21 |issue=1 |pages=1–22 |doi=10.1086/141186|bibcode=1905ApJ....21....1S }}</ref><ref name="Kortuem">{{Cite book |title=Reflectance spectroscopy Principles, methods, applications |last=Kortüm |first= Gustav |date=1969 |publisher=Springer |isbn=9783642880711 |location=Berlin |oclc=714802320}}</ref> उपचार भी संगत परिणाम देते हैं। जिन उपचारों में विभिन्न धारणाएँ शामिल होती हैं और जो असंगत परिणाम देते हैं, वे जियोवानेली हैं<ref name="Reflection by semi-infinite diffuse">{{cite journal |last1=Giovanelli |first1=Ronald |title=Reflection by semi-infinite diffusers |journal=Optica Acta |date=1955 |volume=2 |issue=4 |pages=153–162|doi=10.1080/713821040 |bibcode=1955AcOpt...2..153G }}</ref> सटीक समाधान, और मेलमेड के कण सिद्धांत<ref>{{cite journal |last1=Melamed |first1=N T |title=Optical properties of powders. Part I. Optical absorption coefficients and the absolute value of the diffuse reflectance |journal=Journal of Applied Physics |date=1963 |volume=34 |page=560 |doi=10.1063/1.1729309}}</ref> और सीमन्स।<ref name="SimmonsP">{{cite journal |last1=Simmons |first1=E L |title=Modification of the particle−model theory of diffuse reflectance properties of powdered samples |journal=Journal of Applied Physics |date=1975 |volume=46 |issue=1 |page=344 |doi=10.1063/1.321341|bibcode=1975JAP....46..344S }}</ref> | ||
Line 32: | Line 31: | ||
=== कुबेल्का और मंक === | === कुबेल्का और मंक === | ||
{{Main|Kubelka–Munk theory}} | {{Main|Kubelka–Munk theory}} | ||
1931 में, पॉल कुबेल्का (फ्रांज मंक के साथ) ने पेंट के प्रकाशिकी पर लेख प्रकाशित किया, जिसकी | 1931 में, पॉल कुबेल्का (फ्रांज मंक के साथ) ने पेंट के प्रकाशिकी पर लेख प्रकाशित किया, जिसकी पदार्थसामग्री को [[कुबेल्का-मंक सिद्धांत]] के रूप में जाना जाने लगा। उन्होंने अवशोषण और छूट (या बैक-स्कैटर) स्थिरांक का उपयोग किया, ध्यान दिया (स्टीफन एच। वेस्टिन द्वारा अनुवादित) कि कोटिंग की अतिसूक्ष्म परत इसके माध्यम से गुजरने वाले सभी प्रकाश के निश्चित स्थिर हिस्से को अवशोषित और बिखराती है। जबकि यहाँ प्रतीकों और शब्दावली को बदल दिया गया है, उनकी भाषा से यह स्पष्ट प्रतीत होता है कि उनके अंतर समीकरणों में शब्द अवशोषण और बैकस्कैटर (छूट) अंशों के लिए खड़े हैं। उन्होंने यह भी नोट किया कि इन अपरिमेय परतों की अनंत संख्या से परावर्तन पूरी तरह से अवशोषण और बैक-स्कैटर (छूट) स्थिरांक के अनुपात का कार्य है {{math|''a''<sub>0</sub>/''r''<sub>0</sub>}}, लेकिन किसी भी तरह से इन स्थिरांकों के पूर्ण संख्यात्मक मानों पर नहीं। यह स्पेक्ट्रोस्कोपिक उद्देश्यों के लिए गलत निकला, लेकिन कोटिंग्स के लिए आवेदन के लिए अच्छा अनुमान है।{{Cn|date=December 2022}} | ||
हालांकि, उनके गणितीय उपचार की संशोधित प्रस्तुतियों में, जिसमें कुबेल्का, गुस्ताव कोर्तुम | कोर्तुम और हेचट (नीचे) शामिल हैं, निम्नलिखित प्रतीकवाद लोकप्रिय हो गया, भिन्नों के बजाय गुणांकों का उपयोग करते हुए: | हालांकि, उनके गणितीय उपचार की संशोधित प्रस्तुतियों में, जिसमें कुबेल्का, गुस्ताव कोर्तुम | कोर्तुम और हेचट (नीचे) शामिल हैं, निम्नलिखित प्रतीकवाद लोकप्रिय हो गया, भिन्नों के बजाय गुणांकों का उपयोग करते हुए: | ||
Line 73: | Line 72: | ||
यह वही छूट कार्य है जो जुड द्वारा उपयोग किया जाता है, लेकिन कोर्तुम के अनुवादक ने इसे तथाकथित परावर्तक कार्य के रूप में संदर्भित किया है। यदि हम कण गुणों को वापस प्रतिस्थापित करते हैं, तो हम प्राप्त करते हैं <math>\frac {k}{s} = \frac {\left( \frac {2\alpha}{\alpha + \sigma}\right)}{\left( \frac {\sigma}{\alpha + \sigma}\right)} = 2 \frac {\alpha}{\sigma}</math> और फिर हम समदैशिक प्रकीर्णन के लिए शूस्टर समीकरण प्राप्त करते हैं: | यह वही छूट कार्य है जो जुड द्वारा उपयोग किया जाता है, लेकिन कोर्तुम के अनुवादक ने इसे तथाकथित परावर्तक कार्य के रूप में संदर्भित किया है। यदि हम कण गुणों को वापस प्रतिस्थापित करते हैं, तो हम प्राप्त करते हैं <math>\frac {k}{s} = \frac {\left( \frac {2\alpha}{\alpha + \sigma}\right)}{\left( \frac {\sigma}{\alpha + \sigma}\right)} = 2 \frac {\alpha}{\sigma}</math> और फिर हम समदैशिक प्रकीर्णन के लिए शूस्टर समीकरण प्राप्त करते हैं: | ||
:<math>F(R_\infty) = \frac {(1-R_\infty)^2}{2R_\infty} = 2\frac{\alpha}{\sigma}</math> | :<math>F(R_\infty) = \frac {(1-R_\infty)^2}{2R_\infty} = 2\frac{\alpha}{\sigma}</math> | ||
इसके अतिरिक्त, कोर्तम ने कुबेल्का-मंक एक्सपोनेंशियल सॉल्यूशन को परिभाषित करके व्युत्पन्न किया {{mvar|k}} और {{mvar|s}} | इसके अतिरिक्त, कोर्तम ने कुबेल्का-मंक एक्सपोनेंशियल सॉल्यूशन को परिभाषित करके व्युत्पन्न किया {{mvar|k}} और {{mvar|s}} पदार्थसामग्री के प्रति सेंटीमीटर अवशोषण और बिखरने वाले गुणांक और प्रतिस्थापन के रूप में: {{math|''K'' ≡ 2''k''}} और {{math|''S'' ≡ 2''s''}}, फुटनोट में इंगित करते हुए कि {{mvar|S}} पश्च प्रकीर्णन गुणांक है। उन्होंने कुबेल्का-मंक फ़ंक्शन, जिसे आमतौर पर कुबेल्का-मंक समीकरण कहा जाता है, के साथ घाव किया: | ||
:<math>F(R_\infty) \equiv \frac {(1-R_\infty)^2}{2R_\infty} = \frac{K}{S}</math> | :<math>F(R_\infty) \equiv \frac {(1-R_\infty)^2}{2R_\infty} = \frac{K}{S}</math> | ||
कोर्तम ने निष्कर्ष निकाला कि कुबेल्का और मंक के दो निरंतर सिद्धांत प्रायोगिक परीक्षण के लिए सुलभ निष्कर्ष की ओर ले जाते हैं। व्यवहार में ये कम से कम गुणात्मक रूप से पुष्ट पाए जाते हैं, और मात्रात्मक रूप से भी, बनाई गई धारणाओं को पूरा करने वाली उपयुक्त स्थितियाँ हैं। | कोर्तम ने निष्कर्ष निकाला कि कुबेल्का और मंक के दो निरंतर सिद्धांत प्रायोगिक परीक्षण के लिए सुलभ निष्कर्ष की ओर ले जाते हैं। व्यवहार में ये कम से कम गुणात्मक रूप से पुष्ट पाए जाते हैं, और मात्रात्मक रूप से भी, बनाई गई धारणाओं को पूरा करने वाली उपयुक्त स्थितियाँ हैं। | ||
Line 85: | Line 84: | ||
हेचट द्वारा जोर दिए गए छूट समारोह की विशेषताओं में से यह तथ्य था कि | हेचट द्वारा जोर दिए गए छूट समारोह की विशेषताओं में से यह तथ्य था कि | ||
:<math>\log F(R_\infty) = \log k - \log s</math> | :<math>\log F(R_\infty) = \log k - \log s</math> | ||
द्वारा विस्थापित अवशोषण स्पेक्ट्रम प्राप्त करना चाहिए {{math|-log ''s''}}. जबकि बिखरने वाला गुणांक कण आकार के साथ बदल सकता है, अवशोषण गुणांक, जो अवशोषक की एकाग्रता के आनुपातिक होना चाहिए, स्पेक्ट्रम के लिए पृष्ठभूमि सुधार द्वारा प्राप्त किया जा सकता है। हालांकि, प्रयोगात्मक आंकड़ों से पता चला है कि संबंध दृढ़ता से अवशोषित | द्वारा विस्थापित अवशोषण स्पेक्ट्रम प्राप्त करना चाहिए {{math|-log ''s''}}. जबकि बिखरने वाला गुणांक कण आकार के साथ बदल सकता है, अवशोषण गुणांक, जो अवशोषक की एकाग्रता के आनुपातिक होना चाहिए, स्पेक्ट्रम के लिए पृष्ठभूमि सुधार द्वारा प्राप्त किया जा सकता है। हालांकि, प्रयोगात्मक आंकड़ों से पता चला है कि संबंध दृढ़ता से अवशोषित पदार्थसामग्री में नहीं था। कुबेल्का-मंक समीकरण की इस विफलता के लिए विभिन्न स्पष्टीकरणों के साथ कई पत्र प्रकाशित किए गए। प्रस्तावित अपराधियों में शामिल हैं: अधूरा प्रसार, अनिसोट्रोपिक बिखराव (अमान्य धारणा है कि विकिरण किसी दिए गए कण से सभी दिशाओं में समान रूप से लौटाया जाता है), और नियमित परावर्तन की उपस्थिति। इन कथित कमियों को ठीक करने के लिए मॉडल और सिद्धांतों के असंख्य प्रस्तावों के परिणामस्वरूप स्थिति उत्पन्न हुई। विभिन्न वैकल्पिक सिद्धांतों का मूल्यांकन और तुलना की गई।<ref name="HechtJ" /><ref>{{cite journal |last1=Simmons |first1=E L |title=Diffuse reflectance spectroscopy: a comparison of the theories |journal=Applied Optics |date=1975 |volume=14 |issue=6 |pages=1380–1386 |doi=10.1364/AO.14.001380|pmid=20154834 |bibcode=1975ApOpt..14.1380S }}</ref> | ||
अपनी पुस्तक में, हेचट ने स्टोक्स और मेलमेड फ़ार्मुलों के गणित की सूचना दी (जिसे उन्होंने "सांख्यिकीय तरीके" कहा)। उन्होंने मेलमेड के दृष्टिकोण पर विश्वास किया,<ref name="Melamed" />जिसमें "अलग-अलग कणों पर योग शामिल है" "विमान समानांतर परतों" के योगों की तुलना में अधिक संतोषजनक था। दुर्भाग्य से, मेलमेड की विधि विफल हो गई क्योंकि कणों का अपवर्तक सूचकांक एकता के करीब पहुंच गया, लेकिन उन्होंने व्यक्तिगत कण गुणों का उपयोग करने के महत्व पर ध्यान दिया, जो कि नमूने के लिए औसत गुणों का प्रतिनिधित्व करने वाले गुणांक के विपरीत था। ई. एल. सीमन्स ने बोझिल समीकरणों के उपयोग के बिना मौलिक ऑप्टिकल स्थिरांकों को प्रकीर्णन परावर्तन से संबंधित करने के लिए कण मॉडल के सरलीकृत संशोधन का उपयोग किया। 1975 में, सीमन्स ने विसरित परावर्तन स्पेक्ट्रोस्कोपी के विभिन्न सिद्धांतों का मूल्यांकन किया और निष्कर्ष निकाला कि संशोधित कण मॉडल सिद्धांत संभवतः सबसे अधिक सही है। | अपनी पुस्तक में, हेचट ने स्टोक्स और मेलमेड फ़ार्मुलों के गणित की सूचना दी (जिसे उन्होंने "सांख्यिकीय तरीके" कहा)। उन्होंने मेलमेड के दृष्टिकोण पर विश्वास किया,<ref name="Melamed" />जिसमें "अलग-अलग कणों पर योग शामिल है" "विमान समानांतर परतों" के योगों की तुलना में अधिक संतोषजनक था। दुर्भाग्य से, मेलमेड की विधि विफल हो गई क्योंकि कणों का अपवर्तक सूचकांक एकता के करीब पहुंच गया, लेकिन उन्होंने व्यक्तिगत कण गुणों का उपयोग करने के महत्व पर ध्यान दिया, जो कि नमूने के लिए औसत गुणों का प्रतिनिधित्व करने वाले गुणांक के विपरीत था। ई. एल. सीमन्स ने बोझिल समीकरणों के उपयोग के बिना मौलिक ऑप्टिकल स्थिरांकों को प्रकीर्णन परावर्तन से संबंधित करने के लिए कण मॉडल के सरलीकृत संशोधन का उपयोग किया। 1975 में, सीमन्स ने विसरित परावर्तन स्पेक्ट्रोस्कोपी के विभिन्न सिद्धांतों का मूल्यांकन किया और निष्कर्ष निकाला कि संशोधित कण मॉडल सिद्धांत संभवतः सबसे अधिक सही है। | ||
Line 131: | Line 130: | ||
=== छूट === | === छूट === | ||
स्पेक्ट्रोस्कोपी में, विमुद्रीकरण | स्पेक्ट्रोस्कोपी में, विमुद्रीकरण पदार्थसामग्री द्वारा प्रकाश के परावर्तन या बैक-स्कैटरिंग को संदर्भित करता है। पुन: उत्सर्जन शब्द के समान, यह वह प्रकाश है जो पदार्थसामग्री के माध्यम से प्रसारित होने के विपरीत पदार्थसामग्री से वापस बिखरा हुआ है। पुन: उत्सर्जन शब्द ऐसे किसी दिशात्मक चरित्र को नहीं दर्शाता है। उत्सर्जन शब्द की उत्पत्ति के आधार पर, जिसका अर्थ है बाहर भेजना या दूर करना, पुनः उत्सर्जन का अर्थ है फिर से बाहर भेजना, संचारित का अर्थ है पार या माध्यम से भेजना, और प्रेषण का अर्थ है वापस भेजना। | ||
=== समतल-समानांतर परतें === | === समतल-समानांतर परतें === | ||
Line 141: | Line 140: | ||
== प्रयुक्त प्रमुख प्रतीकों की सूची == | == प्रयुक्त प्रमुख प्रतीकों की सूची == | ||
नोट: जहां दिए गए अक्षर का उपयोग बड़े और छोटे दोनों रूपों में किया जाता है ({{mvar|r}}, {{mvar|R}} और {{mvar|t}} ,{{mvar|T}}) कैपिटल लेटर मैक्रोस्कोपिक ऑब्जर्वेबल और लोअर केस लेटर को व्यक्तिगत कण या | नोट: जहां दिए गए अक्षर का उपयोग बड़े और छोटे दोनों रूपों में किया जाता है ({{mvar|r}}, {{mvar|R}} और {{mvar|t}} ,{{mvar|T}}) कैपिटल लेटर मैक्रोस्कोपिक ऑब्जर्वेबल और लोअर केस लेटर को व्यक्तिगत कण या पदार्थसामग्री की परत के लिए संबंधित चर के लिए संदर्भित करता है। कण के गुणों के लिए ग्रीक प्रतीकों का उपयोग किया जाता है। | ||
: {{mvar|a}} - परत का अवशोषण अंश | : {{mvar|a}} - परत का अवशोषण अंश |
Revision as of 16:13, 9 February 2023
डिफ्यूज़ रिफ्लेक्शन स्पेक्ट्रोस्कोपी, या डिफ्यूज़ रिफ्लेक्शन स्पेक्ट्रोस्कोपी, अवशोषण स्पेक्ट्रोस्कोपी का उप-समुच्चय है। इसे कभी-कभी रिमिशन स्पेक्ट्रोस्कोपी कहा जाता है। विमुद्रीकरण परावर्तन (भौतिकी) या किसी पदार्थसामग्री द्वारा प्रकाश का पश्च प्रकीर्णन है, जबकि संचरण पदार्थसामग्री के माध्यम से प्रकाश का मार्ग है। छूट शब्द का तात्पर्य बिखराव की दिशा से है, जो बिखरने की प्रक्रिया से स्वतंत्र है। विमुद्रीकरण में स्पेक्युलर और डिफ्यूज़ली पश्च प्रकीर्णन प्रकाश दोनों शामिल हैं। 'परावर्तन' शब्द का अर्थ अक्सर विशेष शारीरिक प्रक्रिया, जैसे स्पेक्युलर परावर्तन होता है।
रिमिशन स्पेक्ट्रोस्कोपी शब्द का उपयोग अपेक्षाकृत हाल ही में हुआ है, और दवा और जैव रसायन से संबंधित अनुप्रयोगों में इसका पहला उपयोग पाया गया है। जबकि अवशोषण स्पेक्ट्रोस्कोपी के कुछ क्षेत्रों में यह शब्द अधिक सामान्य होता जा रहा है, शब्द प्रकीर्णन परावर्तन दृढ़ता से फैला हुआ है, जैसा कि प्रकीर्णन परावर्तन अवरक्त फूरियर ट्रांसफॉर्म स्पेक्ट्रोस्कोपी (डीआरआईएफटीएस) और प्रकीर्णन-परावर्तन पराबैंगनी-दृश्यमान स्पेक्ट्रोस्कोपी में है।
विसरित परावर्तन और संप्रेषण से संबंधित गणितीय उपचार
बिखरने वाली पदार्थसामग्री के लिए अवशोषण स्पेक्ट्रोस्कोपी के गणितीय उपचार मूल रूप से बड़े पैमाने पर अन्य क्षेत्रों से उधार लिए गए थे। सबसे सफल उपचार नमूने को परतों में विभाजित करने की अवधारणा का उपयोग करते हैं, जिसे समतल समानांतर परतें कहा जाता है। वे आम तौर पर दो-प्रवाह या दो-धारा सन्निकटन के अनुरूप होते हैं। कुछ उपचारों के लिए सभी बिखरे हुए प्रकाश की आवश्यकता होती है, दोनों प्रेषित और प्रसारित प्रकाश, मापने के लिए। अन्य केवल प्रेषित प्रकाश पर लागू होते हैं, इस धारणा के साथ कि नमूना असीम रूप से मोटा है और कोई प्रकाश प्रसारित नहीं करता है। ये अधिक सामान्य उपचारों के विशेष मामले हैं।
प्रतिनिधि परत सिद्धांत से संबंधित कई सामान्य उपचार हैं, जिनमें से सभी दूसरे के साथ संगत हैं। वे स्टोक्स सूत्र हैं,[1] बेनफोर्ड के समीकरण,[2] हेच परिमित अंतर सूत्र,[3] और दाहम समीकरण।[4][5] अपरिमेय परतों के विशेष मामले के लिए, कुबेल्का-मंक[6] और शूस्टर-गुस्ताव कोर्तम|माय कोर्तम[7][8] उपचार भी संगत परिणाम देते हैं। जिन उपचारों में विभिन्न धारणाएँ शामिल होती हैं और जो असंगत परिणाम देते हैं, वे जियोवानेली हैं[9] सटीक समाधान, और मेलमेड के कण सिद्धांत[10] और सीमन्स।[11]
जॉर्ज गेब्रियल स्टोक्स
सर जॉर्ज स्टोक्स, प्रथम बैरोनेट (गुस्ताव किरचॉफ के बाद के काम की उपेक्षा नहीं करने के लिए), को अक्सर स्पेक्ट्रोस्कोपी के मूलभूत सिद्धांतों को पहली बार प्रतिपादित करने का श्रेय दिया जाता है। 1862 में, स्टोक्स ने प्लेटों के ढेर से प्रेषित और प्रेषित प्रकाश की मात्रा निर्धारित करने के लिए सूत्र प्रकाशित किए। वह अपने काम का वर्णन कुछ रुचि की गणितीय समस्या को संबोधित करने के रूप में करता है। उन्होंने ज्यामितीय श्रृंखला के योगों का उपयोग करके समस्या को हल किया, लेकिन परिणाम निरंतर कार्यों के रूप में व्यक्त किए गए। इसका मतलब यह है कि परिणामों को प्लेटों की आंशिक संख्या पर लागू किया जा सकता है, हालांकि उनका केवल अभिन्न संख्या के लिए अभीष्ट अर्थ है। नीचे दिए गए परिणाम असतत कार्यों के साथ संगत रूप में प्रस्तुत किए गए हैं।
स्टोक्स ने परावर्तन (भौतिकी) शब्द का इस्तेमाल किया, छूट नहीं, विशेष रूप से जिसे अक्सर नियमित या स्पेक्युलर परावर्तन कहा जाता है। नियमित परावर्तन में, फ़्रेस्नेल समीकरण भौतिकी का वर्णन करते हैं, जिसमें प्लेट की ऑप्टिकल सीमा पर परावर्तन और अपवर्तन दोनों शामिल होते हैं। प्लेटों का ढेर अभी भी कला का शब्द है जिसका उपयोग ध्रुवीकरणकर्ता का वर्णन करने के लिए किया जाता है जिसमें ध्रुवीकृत बीम कोण पर प्लेटों के ढेर को अप्रकाशित घटना बीम पर झुकाकर प्राप्त किया जाता है। ध्रुवीकरण (तरंगों) का क्षेत्र विशेष रूप से स्टोक्स की इस गणितीय समस्या में दिलचस्पी थी।
प्लेटों के ढेर के माध्यम से छूट और संचरण के लिए स्टोक्स सूत्र
एक नमूने के लिए जिसमें शामिल है n परतें, प्रत्येक में इसके अवशोषण, छूट और संचरण (एआरटी) अंशों का प्रतीक है {a, r, t} , साथ a + r + t = 1, कोई नमूने के लिए एआरटी अंशों का प्रतीक हो सकता है {Αn, Rn, Tn} और उनके मूल्यों की गणना करें
कहाँ
और
फ्रांज आर्थर फ्रेडरिक शूस्टर
1905 में, धूमिल वातावरण के माध्यम से विकिरण नामक लेख में, आर्थर शूस्टर ने विकिरण हस्तांतरण के समीकरण का समाधान प्रकाशित किया, जो माध्यम से विकिरण के प्रसार का वर्णन करता है, जो अवशोषण, उत्सर्जन और बिखरने की प्रक्रियाओं से प्रभावित होता है।[12] उनके गणित ने द्वि-धारा सन्निकटन का उपयोग किया; यानी, यह माना जाता है कि सभी प्रकाश घटक के साथ या तो ही दिशा में घटना बीम के रूप में या विपरीत दिशा में यात्रा करते हैं। उन्होंने परावर्तन के बजाय प्रकीर्णन शब्द का प्रयोग किया, और प्रकीर्णन को सभी दिशाओं में माना। उन्होंने अवशोषण और आइसोट्रोपिक बिखरने वाले गुणांक के लिए प्रतीकों के और एस का इस्तेमाल किया, और बार-बार विकिरण को परत में प्रवेश करने के लिए संदर्भित किया, जो आकार में अनंत से असीम रूप से मोटा होता है। उनके उपचार में, विकिरण सभी संभावित कोणों पर परतों में प्रवेश करता है, जिसे प्रकीर्णन रोशनी कहा जाता है।
कुबेल्का और मंक
1931 में, पॉल कुबेल्का (फ्रांज मंक के साथ) ने पेंट के प्रकाशिकी पर लेख प्रकाशित किया, जिसकी पदार्थसामग्री को कुबेल्का-मंक सिद्धांत के रूप में जाना जाने लगा। उन्होंने अवशोषण और छूट (या बैक-स्कैटर) स्थिरांक का उपयोग किया, ध्यान दिया (स्टीफन एच। वेस्टिन द्वारा अनुवादित) कि कोटिंग की अतिसूक्ष्म परत इसके माध्यम से गुजरने वाले सभी प्रकाश के निश्चित स्थिर हिस्से को अवशोषित और बिखराती है। जबकि यहाँ प्रतीकों और शब्दावली को बदल दिया गया है, उनकी भाषा से यह स्पष्ट प्रतीत होता है कि उनके अंतर समीकरणों में शब्द अवशोषण और बैकस्कैटर (छूट) अंशों के लिए खड़े हैं। उन्होंने यह भी नोट किया कि इन अपरिमेय परतों की अनंत संख्या से परावर्तन पूरी तरह से अवशोषण और बैक-स्कैटर (छूट) स्थिरांक के अनुपात का कार्य है a0/r0, लेकिन किसी भी तरह से इन स्थिरांकों के पूर्ण संख्यात्मक मानों पर नहीं। यह स्पेक्ट्रोस्कोपिक उद्देश्यों के लिए गलत निकला, लेकिन कोटिंग्स के लिए आवेदन के लिए अच्छा अनुमान है।[citation needed] हालांकि, उनके गणितीय उपचार की संशोधित प्रस्तुतियों में, जिसमें कुबेल्का, गुस्ताव कोर्तुम | कोर्तुम और हेचट (नीचे) शामिल हैं, निम्नलिखित प्रतीकवाद लोकप्रिय हो गया, भिन्नों के बजाय गुणांकों का उपयोग करते हुए:
- अवशोषण गुणांक है ≡ प्रति इकाई मोटाई में प्रकाश ऊर्जा के अवशोषण का सीमित अंश, क्योंकि मोटाई बहुत कम हो जाती है।
- पश्च-प्रकीर्णन गुणांक है ≡ प्रकाश ऊर्जा का सीमित अंश प्रति इकाई मोटाई में पीछे की ओर बिखरा हुआ है क्योंकि मोटाई शून्य हो जाती है।
कुबेल्का–मंक समीकरण
कुबेल्का-मंक समीकरण असीमित परतों की अनंत संख्या से बने नमूने से छूट का वर्णन करता है, प्रत्येक में a0 अवशोषण अंश के रूप में, और r0 छूट अंश के रूप में।
डीन बी। जुड
डीन बी. जुड वस्तुओं की उपस्थिति पर प्रकाश ध्रुवीकरण और प्रसार की डिग्री के प्रभाव में बहुत रुचि रखते थे। उन्होंने वर्णमिति, कलर डिस्क्रिमिनेशन, कलर ऑर्डर और कलर विजन के क्षेत्र में महत्वपूर्ण योगदान दिया। जुड ने नमूने के लिए प्रकीर्णन शक्ति को परिभाषित किया Sd, कहाँ पे d कण व्यास है। यह इस विश्वास के अनुरूप है कि व्युत्पन्न गुणांकों की तुलना में कण से प्रकीर्णन अवधारणात्मक रूप से अधिक महत्वपूर्ण है।
उपरोक्त कुबेल्का-मंक समीकरण को अनुपात के लिए हल किया जा सकता है a0/r0 के अनुसार R∞. इससे परावर्तन के स्थान पर रिमिशन शब्द का बहुत जल्दी (शायद पहला) उपयोग हुआ जब जुड ने रिमिशन फ़ंक्शन को इस रूप में परिभाषित किया , कहाँ k और s अवशोषण और प्रकीर्णन गुणांक हैं, जो प्रतिस्थापित करते हैं a0 और r0 उपरोक्त कुबेल्का-मंक समीकरण में। जुड ने असीमित मोटे नमूने से प्रतिशत परावर्तन के कार्य के रूप में छूट समारोह को सारणीबद्ध किया।[13] यह कार्य, जब अवशोषण के उपाय के रूप में उपयोग किया जाता था, कभी-कभी छद्म-अवशोषण के रूप में जाना जाता था, शब्द जिसे बाद में अन्य परिभाषाओं के साथ प्रयोग किया गया था[14] भी।
जनरल इलेक्ट्रिक
1920 और 30 के दशक में, अल्बर्ट एच. टेलर, आर्थर सी. हार्डी और जनरल इलेक्ट्रिक कंपनी के अन्य लोगों ने ऐसे उपकरणों की श्रृंखला विकसित की, जो परावर्तन में वर्णक्रमीय डेटा को आसानी से रिकॉर्ड करने में सक्षम थे। डेटा के लिए उनकी प्रदर्शन वरीयता % परावर्तन थी। 1946 में, फ्रैंक बेनफोर्ड[2]पैरामीट्रिक समीकरणों की श्रृंखला प्रकाशित की जिसने स्टोक्स सूत्रों के समतुल्य परिणाम दिए। सूत्रों ने परावर्तन और संप्रेषण को व्यक्त करने के लिए अंशों का उपयोग किया।
बेनफोर्ड के समीकरण
यदि A1, R1, और T1 नमूने की प्रतिनिधि परत के लिए जाना जाता है, और An, Rn और Tn से बनी परत के लिए जाने जाते हैं n प्रतिनिधि परतें, मोटाई वाली परत के लिए एआरटी अंश n + 1 हैं
अगर Ad, Rd और Td मोटाई वाली परत के लिए जाने जाते हैं d, की मोटाई वाली परत के लिए ART अंश d/2 हैं
और मोटाई के साथ परत के लिए अंश 2d हैं
अगर Ax, Rx और Tx परत के लिए जाने जाते हैं x और Ay Ry और Ty परत के लिए जाने जाते हैं y, परत से बने नमूने के लिए एआरटी अंश x और परत y हैं
- प्रतीक परत के परावर्तन को संदर्भित करता है जब प्रदीप्ति की दिशा आपतित किरणपुंज की दिशा के समानांतर (गणित) हो। Kubelka-Munk सिद्धांत # Inhomogeneous Layers का उपचार करते समय दिशा में अंतर महत्वपूर्ण है। यह विचार पॉल कुबेल्का द्वारा जोड़ा गया था[15] 1954 में)
गियोवनेली और चंद्रशेखर
1955 में, रॉन गियोवनेली ने रुचि के कई मामलों के लिए स्पष्ट अभिव्यक्तियाँ प्रकाशित कीं, जिन्हें अर्ध-अनंत आदर्श विसारक के लिए विकिरण अंतरण समीकरण के सटीक समाधान के रूप में बताया गया है।[9] उनके समाधान मानक बन गए हैं जिसके विरुद्ध अनुमानित सैद्धांतिक उपचारों के परिणाम मापा जाता है। सुब्रह्मण्यन चंद्रशेखर | सुब्रह्मण्यन (चंद्र) चंद्रशेखर के काम के कारण कई समाधान भ्रामक रूप से सरल दिखाई देते हैं। उदाहरण के लिए, दिशा μ में प्रकाश घटना के लिए कुल परावर्तन0 है यहाँ ω0 एकल प्रकीर्णन का albedo कहा जाता है σ/(α+σ), माध्यम में बिखरने से खोए हुए विकिरण के अंश का प्रतिनिधित्व करता है जहां दोनों अवशोषण (α) और बिखरना (σ) जगह लें। कार्यक्रम H(μ0) एच-इंटीग्रल कहा जाता है, जिसके मूल्यों को चंद्रशेखर द्वारा सारणीबद्ध किया गया था।[16]
गुस्ताव कोर्तुम
गुस्ताव कोर्तुम | कोर्तुम भौतिक रसायनज्ञ थे, जिनकी रुचियों की विस्तृत श्रृंखला थी, और विपुल रूप से प्रकाशित हुई। उनके शोध में प्रकाश प्रकीर्णन के कई पहलू शामिल थे। उन्होंने "परावर्तन स्पेक्ट्रोस्कोपी" कैसे काम करता है, इसकी समझ में विभिन्न क्षेत्रों में जो ज्ञात था उसे साथ खींचना शुरू किया। 1969 में, रिफ्लेक्टेंस स्पेक्ट्रोस्कोपी (तैयारी और अनुवाद में लंबी) नामक उनकी पुस्तक का अंग्रेजी अनुवाद प्रकाशित हुआ था। यह पुस्तक परावर्तन प्रसार इन्फ्रारेड फूरियर ट्रांसफॉर्म स्पेक्ट्रोस्कोपी और निकट-अवरक्त स्पेक्ट्रोस्कोपी दोनों के उभरते हुए क्षेत्रों में 20 वर्षों के लिए दिन की सोच पर हावी हो गई।
कोर्तुम की स्थिति यह थी कि चूंकि नियमित (या स्पेक्युलर परावर्तन) परावर्तन विसरित परावर्तन की तुलना में विभिन्न कानूनों द्वारा शासित होता है, इसलिए उन्हें विभिन्न गणितीय उपचार दिए जाने चाहिए। उन्होंने धूमिल वातावरण में बादलों के उत्सर्जन की अनदेखी करके शूस्टर के काम के आधार पर दृष्टिकोण विकसित किया। अगर हम लेते हैं α घटना प्रकाश के अंश के रूप में अवशोषित और σ कण द्वारा बिखरे हुए आइसोट्रोपिक रेडिएटर के अंश के रूप में (कॉर्टम द्वारा एकल बिखराव के सच्चे गुणांक के रूप में संदर्भित), और परत के लिए अवशोषण और आइसोट्रोपिक बिखरने को परिभाषित करता है और तब: यह वही छूट कार्य है जो जुड द्वारा उपयोग किया जाता है, लेकिन कोर्तुम के अनुवादक ने इसे तथाकथित परावर्तक कार्य के रूप में संदर्भित किया है। यदि हम कण गुणों को वापस प्रतिस्थापित करते हैं, तो हम प्राप्त करते हैं और फिर हम समदैशिक प्रकीर्णन के लिए शूस्टर समीकरण प्राप्त करते हैं:
इसके अतिरिक्त, कोर्तम ने कुबेल्का-मंक एक्सपोनेंशियल सॉल्यूशन को परिभाषित करके व्युत्पन्न किया k और s पदार्थसामग्री के प्रति सेंटीमीटर अवशोषण और बिखरने वाले गुणांक और प्रतिस्थापन के रूप में: K ≡ 2k और S ≡ 2s, फुटनोट में इंगित करते हुए कि S पश्च प्रकीर्णन गुणांक है। उन्होंने कुबेल्का-मंक फ़ंक्शन, जिसे आमतौर पर कुबेल्का-मंक समीकरण कहा जाता है, के साथ घाव किया:
कोर्तम ने निष्कर्ष निकाला कि कुबेल्का और मंक के दो निरंतर सिद्धांत प्रायोगिक परीक्षण के लिए सुलभ निष्कर्ष की ओर ले जाते हैं। व्यवहार में ये कम से कम गुणात्मक रूप से पुष्ट पाए जाते हैं, और मात्रात्मक रूप से भी, बनाई गई धारणाओं को पूरा करने वाली उपयुक्त स्थितियाँ हैं।
कोर्तुम ने कण सिद्धांतों से बचने की कोशिश की, हालांकि उन्होंने रिकॉर्ड किया कि लेखक, वेस्टिंगहाउस रिसर्च लैब्स के एन.टी. मेलमेड ने समतल समानांतर परतों के विचार को छोड़ दिया और उन्हें अलग-अलग कणों पर सांख्यिकीय योग के साथ प्रतिस्थापित किया।[17]
हेचट और सीमन्स
1966 में, हैरी जी. हेचट (वेस्ली डब्ल्यू. वेंडलैंड्ट के साथ) ने रिफ्लेक्टेंस स्पेक्ट्रोस्कोपी नामक पुस्तक प्रकाशित की, क्योंकि संप्रेषण स्पेक्ट्रोस्कोपी के विपरीत, डिफ्यूज़ रिफ्लेक्टेंस स्पेक्ट्रोस्कोपी के विषय पर कोई संदर्भ पुस्तकें नहीं लिखी गई थीं, और मूलभूत सिद्धांत केवल रिफ्लेक्टेंस स्पेक्ट्रोस्कोपी में पाए जाने थे। पुराना साहित्य, जिनमें से कुछ आसानी से उपलब्ध नहीं थे।[18] हेचट ने उस समय क्षेत्र में खुद को नौसिखिया बताया, और कहा कि अगर उन्हें पता होता कि क्षेत्र में महान स्तंभ गुस्ताव कोर्तम इस विषय पर किताब लिखने की प्रक्रिया में था, तो वह कार्य नहीं करता।[19] हेचट को कोर्तुम की किताब की समीक्षा लिखने के लिए कहा गया था[8]और इसके संबंध में उनके पत्राचार ने हेचट को कोर्तम की प्रयोगशालाओं में साल बिताने के लिए प्रेरित किया। कोर्तम लेखक हैं जिन्हें पुस्तक में सबसे अधिक बार उद्धृत किया गया है।
हेचट द्वारा जोर दिए गए छूट समारोह की विशेषताओं में से यह तथ्य था कि
द्वारा विस्थापित अवशोषण स्पेक्ट्रम प्राप्त करना चाहिए -log s. जबकि बिखरने वाला गुणांक कण आकार के साथ बदल सकता है, अवशोषण गुणांक, जो अवशोषक की एकाग्रता के आनुपातिक होना चाहिए, स्पेक्ट्रम के लिए पृष्ठभूमि सुधार द्वारा प्राप्त किया जा सकता है। हालांकि, प्रयोगात्मक आंकड़ों से पता चला है कि संबंध दृढ़ता से अवशोषित पदार्थसामग्री में नहीं था। कुबेल्का-मंक समीकरण की इस विफलता के लिए विभिन्न स्पष्टीकरणों के साथ कई पत्र प्रकाशित किए गए। प्रस्तावित अपराधियों में शामिल हैं: अधूरा प्रसार, अनिसोट्रोपिक बिखराव (अमान्य धारणा है कि विकिरण किसी दिए गए कण से सभी दिशाओं में समान रूप से लौटाया जाता है), और नियमित परावर्तन की उपस्थिति। इन कथित कमियों को ठीक करने के लिए मॉडल और सिद्धांतों के असंख्य प्रस्तावों के परिणामस्वरूप स्थिति उत्पन्न हुई। विभिन्न वैकल्पिक सिद्धांतों का मूल्यांकन और तुलना की गई।[3][20] अपनी पुस्तक में, हेचट ने स्टोक्स और मेलमेड फ़ार्मुलों के गणित की सूचना दी (जिसे उन्होंने "सांख्यिकीय तरीके" कहा)। उन्होंने मेलमेड के दृष्टिकोण पर विश्वास किया,[17]जिसमें "अलग-अलग कणों पर योग शामिल है" "विमान समानांतर परतों" के योगों की तुलना में अधिक संतोषजनक था। दुर्भाग्य से, मेलमेड की विधि विफल हो गई क्योंकि कणों का अपवर्तक सूचकांक एकता के करीब पहुंच गया, लेकिन उन्होंने व्यक्तिगत कण गुणों का उपयोग करने के महत्व पर ध्यान दिया, जो कि नमूने के लिए औसत गुणों का प्रतिनिधित्व करने वाले गुणांक के विपरीत था। ई. एल. सीमन्स ने बोझिल समीकरणों के उपयोग के बिना मौलिक ऑप्टिकल स्थिरांकों को प्रकीर्णन परावर्तन से संबंधित करने के लिए कण मॉडल के सरलीकृत संशोधन का उपयोग किया। 1975 में, सीमन्स ने विसरित परावर्तन स्पेक्ट्रोस्कोपी के विभिन्न सिद्धांतों का मूल्यांकन किया और निष्कर्ष निकाला कि संशोधित कण मॉडल सिद्धांत संभवतः सबसे अधिक सही है।
1976 में, हेचट ने व्यापक रूप से गणितीय उपचारों के असंख्य का वर्णन करते हुए लंबा पत्र लिखा था जो प्रकीर्णन परावर्तन से निपटने के लिए प्रस्तावित किया गया था। इस पत्र में, हेचट ने कहा है कि उन्होंने माना (जैसा कि सीमन्स ने किया था) कि समतल-समानांतर उपचार में, परतों को असीम रूप से छोटा नहीं बनाया जा सकता है, लेकिन नमूने के औसत कण व्यास के रूप में व्याख्या की गई परिमित मोटाई की परतों तक सीमित होना चाहिए। यह अवलोकन द्वारा भी समर्थित है कि कुबेल्का-मंक अवशोषण और बिखरने वाले गुणांक का अनुपात है 3⁄8 गोले के लिए Mi प्रकीर्णन के संगत अनुपात का। सरल ज्यामितीय विचारों द्वारा उस कारक को युक्तिसंगत बनाया जा सकता है,[5] यह पहचानते हुए कि पहले सन्निकटन के लिए, अवशोषण आयतन के समानुपाती होता है और बिखराव पार के अनुभागीय सतह क्षेत्र के समानुपाती होता है। यह पूरी तरह से बिंदु पर अवशोषण और बिखराव को मापने वाले माई गुणांक के साथ संगत है, और कुबेल्का-मंक गुणांक गोले द्वारा बिखराव को मापता है।
कुबेल्का-मंक दृष्टिकोण की इस कमी को ठीक करने के लिए, असीम रूप से मोटे नमूने के मामले में, हेचट ने कण और परत विधियों को परिमित अंतर समीकरणों द्वारा कुबेल्का-मंक उपचार में अंतर समीकरणों को बदलकर मिश्रित किया और हेच परिमित अंतर सूत्र प्राप्त किया। :
हेच स्पष्ट रूप से नहीं जानते थे कि इस परिणाम को सामान्यीकृत किया जा सकता है, लेकिन उन्होंने महसूस किया कि उपरोक्त सूत्र सुधार का प्रतिनिधित्व करता है ... और अधिक सटीक सिद्धांत विकसित करने में बिखरने वाले मीडिया के कण प्रकृति पर विचार करने की आवश्यकता को दर्शाता है।[3]
कार्ल नॉरिस (यूएसडीए), गेराल्ड बर्थ
कार्ल नॉरिस ने निकट-अवरक्त स्पेक्ट्रोस्कोपी के क्षेत्र का बीड़ा उठाया।[21] उन्होंने अवशोषण के मीट्रिक के रूप में लॉग (1/R) का उपयोग करके प्रारंभ किया। जबकि अक्सर जांच किए गए नमूने "असीम रूप से मोटे" थे, आंशिक रूप से पारदर्शी नमूनों का विश्लेषण (विशेष रूप से बाद में) उन कोशिकाओं में किया गया था जिनकी पश्च परावर्तक सतह (परावर्तक) थी जिसे ट्रांसफ्लेक्टेंस कहा जाता है। इसलिए, नमूने से छूट में वह प्रकाश था जो नमूने से वापस बिखरा हुआ था, साथ ही वह प्रकाश जो नमूने के माध्यम से प्रेषित किया गया था, फिर वापस नमूने के माध्यम से प्रसारित होने के लिए परिलक्षित हुआ, जिससे पथ की लंबाई दोगुनी हो गई। डेटा उपचार के लिए कोई ठोस सैद्धांतिक आधार नहीं होने के कारण, नॉरिस ने उसी इलेक्ट्रॉनिक प्रसंस्करण का उपयोग किया जो संचरण में एकत्र किए गए अवशोषण डेटा के लिए उपयोग किया गया था।[22] उन्होंने डेटा के विश्लेषण के लिए कई रेखीय प्रतिगमन के उपयोग का बीड़ा उठाया।
गेरी बर्थ इंटरनेशनल डिफ्यूज रिफ्लेक्टेंस कॉन्फ्रेंस (IDRC) के संस्थापक थे। उन्होंने यूएसडीए में भी काम किया। उन्हें प्रकाश के बिखरने की प्रक्रिया को बेहतर ढंग से समझने की गहरी इच्छा के लिए जाना जाता था। उन्होंने फिल विलियम्स और कार्ल नॉरिस द्वारा संपादित प्रभावशाली हैंडबुक में भौतिकी सिद्धांत अध्याय लिखने के लिए हैरी हेचट (जो आईडीआरसी की शुरुआती बैठकों में सक्रिय थे) के साथ मिलकर काम किया:[23] कृषि और खाद्य उद्योग में इन्फ्रारेड प्रौद्योगिकी के पास।
डोनाल्ड जे दाहम, केविन डी दाहम
1994 में, डोनाल्ड और केविन डहम ने परत के लिए अवशोषण और छूट अंशों से विमान समानांतर परतों की अलग-अलग संख्या के नमूनों से छूट और संचरण की गणना करने के लिए संख्यात्मक तकनीकों का उपयोग करना शुरू किया। उनकी योजना साधारण मॉडल के साथ शुरू करने की थी, समस्या को विश्लेषणात्मक के बजाय संख्यात्मक रूप से व्यवहार करना, फिर संख्यात्मक परिणामों का वर्णन करने वाले विश्लेषणात्मक कार्यों की तलाश करना। इसके साथ सफलता मानते हुए, मॉडल को और अधिक जटिल बना दिया जाएगा, जिससे अधिक जटिल विश्लेषणात्मक अभिव्यक्तियों को प्राप्त किया जा सकेगा, अंततः, स्तर पर प्रकीर्णन परावर्तन की समझ के लिए अग्रणी होगा जो उचित रूप से कणों के नमूनों का अनुमान लगाता है।[19] वे प्रेषित प्रकाश के अंश को दिखाने में सक्षम थे, R, और प्रेषित, T, परतों से बने नमूने द्वारा, प्रत्येक अंश को अवशोषित करता है और अंश प्रेषित करना उस पर पड़ने वाली प्रकाश की मात्रा, अवशोषण/छूट समारोह द्वारा निर्धारित की जा सकती है (प्रतीकात्मक A(R,T) और एआरटी फ़ंक्शन कहा जाता है), जो समान परतों की किसी भी संख्या से बने नमूने के लिए स्थिर है।
दाहम समीकरण
साथ ही इस प्रक्रिया से समतल समानांतर परतों के लिए दो धारा समाधानों के कई विशेष मामलों के परिणाम सामने आए।
शून्य अवशोषण के मामले में, .
अपरिमेय परतों के मामले में, . एआरटी फ़ंक्शन रिमिशन फ़ंक्शन के समकक्ष परिणाम देता है।
शून्य अंश के रूप में v0 परत बड़ी हो जाती है, .
एआरटी समस्थानिक बिखराव के लिए कोर्तम-शूस्टर समीकरण से संबंधित है .
डहम्स ने तर्क दिया कि पारंपरिक अवशोषण और बिखरने वाले गुणांक, साथ ही अंतर समीकरण जो उन्हें नियोजित करते हैं, परोक्ष रूप से मानते हैं कि नमूना आणविक स्तर पर एकरूपता और विषमता है। हालांकि यह अवशोषण के लिए अच्छा सन्निकटन है, क्योंकि अवशोषण का डोमेन आणविक है, बिखरने का डोमेन समग्र रूप से कण है। निरंतर गणित का उपयोग करने वाला कोई भी दृष्टिकोण विफल हो जाएगा क्योंकि कण बड़े हो जाते हैं।[24] समतल समानांतर परतों के गणित का उपयोग करके वास्तविक दुनिया के नमूने के लिए सिद्धांत के सफल अनुप्रयोग के लिए उन परतों को गुण निर्दिष्ट करने की आवश्यकता होती है जो समग्र रूप से नमूने के प्रतिनिधि हैं (जिसके लिए गणित को बड़े पैमाने पर फिर से काम करने की आवश्यकता नहीं होती है)। इस तरह की परत को प्रतिनिधि परत सिद्धांत कहा जाता था # प्रतिनिधि परत की परिभाषा, और सिद्धांत को प्रतिनिधि परत सिद्धांत कहा जाता था।[4]
इसके अलावा, उन्होंने तर्क दिया कि यह अप्रासंगिक था कि परत से दूसरी परत में जाने वाला प्रकाश विशेष रूप से या अलग-अलग परिलक्षित होता था। परावर्तन और बैक स्कैटर को छूट के रूप में साथ रखा गया है। नमूना को उसी तरफ छोड़ने वाले सभी प्रकाश को घटना बीम कहा जाता है, चाहे वह परावर्तन या बैक स्कैटर से उत्पन्न हो। आपतित बीम से विपरीत दिशा में नमूना छोड़ने वाले सभी प्रकाश को संचरण कहा जाता है। (तीन-प्रवाह या उच्च उपचार में, जैसे कि जियोवानेली का, आगे का बिखराव सीधे प्रसारित प्रकाश से अप्रभेद्य नहीं है। इसके अतिरिक्त, जियोवानेली का उपचार अपरिमित कणों की निहित धारणा बनाता है।)
उन्होंने योजना विकसित की, जो दो-फ्लक्स मॉडल की सीमाओं के अधीन थी, प्रतिनिधि परत सिद्धांत #अवशोषित शक्ति की गणना करने के लिए: नमूने के लिए नमूने के स्कैटर सुधारित अवशोषण।[25] बिखरने वाले नमूने के डेकाडिक अवशोषण को इस रूप में परिभाषित किया गया है −log10(R+T) या −log10(1−A). गैर प्रकीर्णन नमूने के लिए, R = 0, और अभिव्यक्ति बन जाती है −log10T या log(1/T), जो अधिक परिचित है। गैर-प्रकीर्णन नमूने में, अवशोषण में गुण होता है कि संख्यात्मक मान नमूना मोटाई के समानुपाती होता है। नतीजतन, तितर-बितर-सुधारित अवशोषक को यथोचित रूप से उस संपत्ति के रूप में परिभाषित किया जा सकता है।
अगर किसी ने नमूने के लिए छूट और संचरण अंशों को मापा है, Rs और Ts, तो तितर बितर-संशोधित अवशोषक का आधा नमूना मोटाई के लिए आधा मान होना चाहिए। के लिए मानों की गणना करके R और T क्रमिक पतले नमूनों के लिए (s, 1/2s, 1/4s, …) आधी मोटाई के लिए बेनफोर्ड के समीकरणों का उपयोग करके, स्थान पर पहुंच जाएगा, जहां के क्रमिक मूल्यों के लिए n (0,1,2,3,...), व्यंजक 2n (−log(R+T)) कुछ निर्दिष्ट सीमा के भीतर स्थिर हो जाता है, आमतौर पर 0.01 अवशोषक इकाइयां। यह मान बिखराव-संशोधित अवशोषक है।
परिभाषाएँ
छूट
स्पेक्ट्रोस्कोपी में, विमुद्रीकरण पदार्थसामग्री द्वारा प्रकाश के परावर्तन या बैक-स्कैटरिंग को संदर्भित करता है। पुन: उत्सर्जन शब्द के समान, यह वह प्रकाश है जो पदार्थसामग्री के माध्यम से प्रसारित होने के विपरीत पदार्थसामग्री से वापस बिखरा हुआ है। पुन: उत्सर्जन शब्द ऐसे किसी दिशात्मक चरित्र को नहीं दर्शाता है। उत्सर्जन शब्द की उत्पत्ति के आधार पर, जिसका अर्थ है बाहर भेजना या दूर करना, पुनः उत्सर्जन का अर्थ है फिर से बाहर भेजना, संचारित का अर्थ है पार या माध्यम से भेजना, और प्रेषण का अर्थ है वापस भेजना।
समतल-समानांतर परतें
स्पेक्ट्रोस्कोपी में, शब्द समतल समानांतर परतों को सिद्धांत पर चर्चा करने में गणितीय निर्माण के रूप में नियोजित किया जा सकता है। परतें अर्ध-अनंत मानी जाती हैं। (गणित में, अर्ध-अनंत वस्तुएँ ऐसी वस्तुएँ होती हैं जो अनंत या कुछ में असीमित होती हैं, लेकिन सभी संभव तरीकों से नहीं।) आम तौर पर, अर्ध-अनंत परत को दो सपाट समानांतर विमानों से घिरा होने के रूप में देखा जाता है, जिनमें से प्रत्येक अनिश्चित रूप से विस्तारित होता है, और संपार्श्विक (या निर्देशित) घटना बीम की दिशा में सामान्य (लंबवत)। विमान आवश्यक रूप से भौतिक सतह नहीं हैं जो प्रकाश को अपवर्तित और परावर्तनित करते हैं, लेकिन अंतरिक्ष में निलंबित गणितीय विमान का वर्णन कर सकते हैं। जब समतल समानांतर परतों में सतहें होती हैं, तो उन्हें विभिन्न प्रकार से प्लेट, शीट या स्लैब कहा जाता है।
प्रतिनिधि परत
प्रतिनिधि परत शब्द काल्पनिक समतल समानांतर परत को संदर्भित करता है जिसमें अवशोषण स्पेक्ट्रोस्कोपी से संबंधित गुण होते हैं जो पूरे के रूप में नमूने के प्रतिनिधि होते हैं। कण के नमूनों के लिए, परत प्रतिनिधि होती है यदि नमूने में प्रत्येक प्रकार का कण परत में मात्रा और सतह क्षेत्र के समान अंश बनाता है जैसा कि नमूने में होता है। परत में शून्य अंश भी नमूने के समान ही है। प्रतिनिधि परत सिद्धांत में निहित है कि अवशोषण आणविक स्तर पर होता है, लेकिन यह बिखराव पूरे कण से होता है।
प्रयुक्त प्रमुख प्रतीकों की सूची
नोट: जहां दिए गए अक्षर का उपयोग बड़े और छोटे दोनों रूपों में किया जाता है (r, R और t ,T) कैपिटल लेटर मैक्रोस्कोपिक ऑब्जर्वेबल और लोअर केस लेटर को व्यक्तिगत कण या पदार्थसामग्री की परत के लिए संबंधित चर के लिए संदर्भित करता है। कण के गुणों के लिए ग्रीक प्रतीकों का उपयोग किया जाता है।
- a - परत का अवशोषण अंश
- r - परत का छूट अंश
- t - परत का संचरण अंश
- An, Rn, Tn - से बने नमूने के लिए अवशोषण, छूट और संचरण अंश n परतों
- α - कण का अवशोषण अंश
- β - कण से बैक-स्कैटरिंग
- σ - कण से आइसोट्रोपिक प्रकीर्णन
- k - अवशोषण गुणांक उस परत की मोटाई से विभाजित बहुत पतली परत द्वारा अवशोषित घटना प्रकाश के अंश के रूप में परिभाषित किया गया है
- s - प्रकीर्णन गुणांक को उस परत की मोटाई से विभाजित बहुत पतली परत द्वारा बिखरी घटना प्रकाश के अंश के रूप में परिभाषित किया गया है
संदर्भ
- ↑ Stokes, George (1862). "On the intensity of the light reflected from or transmitted through a pile of plates". Proceedings of the Royal Society of London. 11: 545–556. doi:10.1098/rspl.1860.0119.
- ↑ 2.0 2.1 Benford, Frank (1946). "Radiation in a Diffusing Medium". Journal of the Optical Society of America. 36 (9): 524–554. doi:10.1364/JOSA.36.000524. PMID 21002043.
- ↑ 3.0 3.1 3.2 Hecht, Harry (1976). "The Interpretation of Diffuse Reflectance Spectra". Journal of Research of the National Bureau of Standards Section A. 80A (4): 567–583. doi:10.6028/jres.080A.056. PMC 5293523. PMID 32196278.
- ↑ 4.0 4.1 Dahm, Donald (1999). "Representative Layer Theory for Diffuse Reflectance". Applied Spectroscopy. 53 (6): 647–654. Bibcode:1999ApSpe..53..647D. doi:10.1366/0003702991947298. S2CID 96885077.
- ↑ 5.0 5.1 Griffiths, Peter; Dahm, Donald J. (2007). "Continuum and Discontinuum Theories of Diffuse Reflection". In Burns, Donald A. (ed.). Handbook of Near-Infrared Analysis (3rd ed.). Boca Raton: CRC Press. ISBN 9780849373930.
- ↑ Kubelka, Paul (1931). "Ein Beitrag zur Optik der Farbanstriche" (PDF). Zeits. F. Techn. Physik. 12: 593–601.
- ↑ Schuster, Aurhur (1905). "Radiation through a foggy atmosphere". Astrophysical Journal. 21 (1): 1–22. Bibcode:1905ApJ....21....1S. doi:10.1086/141186.
- ↑ 8.0 8.1 Kortüm, Gustav (1969). Reflectance spectroscopy Principles, methods, applications. Berlin: Springer. ISBN 9783642880711. OCLC 714802320.
- ↑ 9.0 9.1 Giovanelli, Ronald (1955). "Reflection by semi-infinite diffusers". Optica Acta. 2 (4): 153–162. Bibcode:1955AcOpt...2..153G. doi:10.1080/713821040.
- ↑ Melamed, N T (1963). "Optical properties of powders. Part I. Optical absorption coefficients and the absolute value of the diffuse reflectance". Journal of Applied Physics. 34: 560. doi:10.1063/1.1729309.
- ↑ Simmons, E L (1975). "Modification of the particle−model theory of diffuse reflectance properties of powdered samples". Journal of Applied Physics. 46 (1): 344. Bibcode:1975JAP....46..344S. doi:10.1063/1.321341.
- ↑ Schuster, Arthur (1905-01-01). "Radiation Through a Foggy Atmosphere". The Astrophysical Journal. 21: 1. doi:10.1086/141186. ISSN 0004-637X.
- ↑ Judd, D B (1963). Color in Business, Science, and Industry (2 ed.). New York: John Wiley & Sons, Inc.
- ↑ Reeves, James B.; McCarty, Gregory W.; Rutherford, David W.; Wershaw, Robert L. (1 October 2007). "Near Infrared Spectroscopic Examination of Charred Pine Wood, Bark, Cellulose and Lignin: Implications for the Quantitative Determination of Charcoal in Soils". Journal of Near Infrared Spectroscopy (in English). 15 (5): 307–315. doi:10.1255/jnirs.742. ISSN 0967-0335.
- ↑ Kubelka, Paul (1954-04-01). "New Contributions to the Optics of Intensely Light-Scattering Materials. Part II: Nonhomogeneous Layers*". JOSA (in English). 44 (4): 330–335. doi:10.1364/JOSA.44.000330.
- ↑ Chandrasekhar, S (1960). Radiative Transfer. New York: Dover Publications, Inc. ISBN 978-0486605906.
- ↑ 17.0 17.1 Melamed, N T (1963). "Optical properties of powders. Part I. Optical absorption coefficients and the absolute value of the diffuse reflectance". Journal of Applied Physics. 34: 560. doi:10.1063/1.1729309.
- ↑ Wendlandt, Wesley (1969). Reflectance Spectroscopy. New York: Interscience Publishers.
- ↑ 19.0 19.1 Dahm, Donald (2007). Interpreting Diffuse Reflectance and Transmittance: A Theoretical Introduction to Absorption Spectroscopy of Scattering Materials. Chichester, UK: NIR Publications. ISBN 9781901019056.
- ↑ Simmons, E L (1975). "Diffuse reflectance spectroscopy: a comparison of the theories". Applied Optics. 14 (6): 1380–1386. Bibcode:1975ApOpt..14.1380S. doi:10.1364/AO.14.001380. PMID 20154834.
- ↑ Williams, Phil (2019-10-01). "Karl H. Norris, the Father of Near-Infrared Spectroscopy". NIR news. 30 (7–8): 25–27. doi:10.1177/0960336019875883. ISSN 0960-3360.
- ↑ Norris, Karl (2005). "Why log(1/R) for Composition Analysis with NIR?". NIR News. 16 (8): 10–13. doi:10.1255/nirn.865. S2CID 100866871.
- ↑ Birth, Gerald (1983). "The Physics of Near–InfraRed Reflectance", in Nearinfrared Technology in the Agriculture and Food Industries, Ed by Phil Williams and Karl Norris (1 ed.). St Paul, MN: The American Association of Cereal Chemists. ISBN 1891127241.
- ↑ Dahm, Donald (2003). "Illustration of Failure of Continuum Models of Diffuse Reflectance". Journal of Near Infrared Spectroscopy. 11 (6): 479–485. doi:10.1255/jnirs.398. S2CID 93926306.
- ↑ Dahm, Kevin (2013). "Separating the Effects of Scatter and Absorption Using the Representative Layer". Journal of Near Infrared Spectroscopy. 21 (5): 351–357. Bibcode:2013JNIS...21..351D. doi:10.1255/jnirs.1062. S2CID 98416407.