कार्य (विद्युत क्षेत्र): Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[विद्युत क्षेत्र]] का कार्य एक विद्युत क्षेत्र द्वारा उसके आसपास के आवेशित कण पर किया जाने वाला कार्य है। स्थित कण विद्युत क्षेत्र के साथ एक संपर्क का अनुभव करता है। आवेश की प्रति इकाई कार्य दो बिंदुओं के बीच एक नगण्य परीक्षण आवेश को स्थानांतरित करके परिभाषित किया जाता है, और उन बिंदुओं पर विद्युत क्षमता में अंतर के रूप में व्यक्त किया जाता है। काम किया जा सकता है, उदाहरण के लिए, विद्युत रासायनिक उपकरणों (विद्युत रासायनिक कोशिकाओं) या विभिन्न धातु जंक्शनों द्वारा{{Clarification needed|reason=What is meant by "different metals junctions"? Is it perhaps [[Electromotive_force#Contact_potentials]]?|date=September 2022}} [[वैद्युतवाहक बल]] उत्पन्न करना। | [[विद्युत क्षेत्र]] का कार्य एक विद्युत क्षेत्र द्वारा उसके आसपास के आवेशित कण पर किया जाने वाला कार्य है। स्थित कण विद्युत क्षेत्र के साथ एक संपर्क का अनुभव करता है। आवेश की प्रति इकाई कार्य दो बिंदुओं के बीच एक नगण्य परीक्षण आवेश को स्थानांतरित करके परिभाषित किया जाता है, और उन बिंदुओं पर विद्युत क्षमता में अंतर के रूप में व्यक्त किया जाता है। काम किया जा सकता है, उदाहरण के लिए, विद्युत रासायनिक उपकरणों (विद्युत रासायनिक कोशिकाओं) या विभिन्न धातु जंक्शनों द्वारा{{Clarification needed|reason=What is meant by "different metals junctions"? Is it perhaps [[Electromotive_force#Contact_potentials]]?|date=September 2022}} [[वैद्युतवाहक बल]] उत्पन्न करना। | ||
Line 10: | Line 8: | ||
उच्च क्षमता वाले क्षेत्र में सकारात्मक आवेश के किसी भी संचलन के लिए विद्युत क्षेत्र के विरुद्ध बाहरी कार्य करने की आवश्यकता होती है, जो उस कार्य के बराबर होता है जो विद्युत क्षेत्र उस धनात्मक आवेश को समान दूरी पर विपरीत दिशा में ले जाने में करता है। इसी तरह, नकारात्मक रूप से आवेशित कण को उच्च क्षमता वाले क्षेत्र से कम क्षमता वाले क्षेत्र में स्थानांतरित करने के लिए सकारात्मक बाहरी कार्य की आवश्यकता होती है। | उच्च क्षमता वाले क्षेत्र में सकारात्मक आवेश के किसी भी संचलन के लिए विद्युत क्षेत्र के विरुद्ध बाहरी कार्य करने की आवश्यकता होती है, जो उस कार्य के बराबर होता है जो विद्युत क्षेत्र उस धनात्मक आवेश को समान दूरी पर विपरीत दिशा में ले जाने में करता है। इसी तरह, नकारात्मक रूप से आवेशित कण को उच्च क्षमता वाले क्षेत्र से कम क्षमता वाले क्षेत्र में स्थानांतरित करने के लिए सकारात्मक बाहरी कार्य की आवश्यकता होती है। | ||
किरचॉफ का [[वोल्टेज]] | किरचॉफ का [[वोल्टेज]] नियम, इलेक्ट्रिकल और इलेक्ट्रॉनिक परिपथ को नियंत्रित करने वाले सबसे मौलिक नियमों में से एक है, हमें बताता है कि किसी भी इलेक्ट्रिकल परिपथ में वोल्टेज लाभ और गिरावट हमेशा शून्य होती है। | ||
विद्युत कार्य के लिए औपचारिकता का यांत्रिक कार्य के समान प्रारूप है। दो बिंदुओं के बीच एक नगण्य परीक्षण आवेश को ले जाने पर प्रति इकाई आवेश का कार्य, उन बिंदुओं के बीच वोल्टेज के रूप में परिभाषित किया जाता है। | विद्युत कार्य के लिए औपचारिकता का यांत्रिक कार्य के समान प्रारूप है। दो बिंदुओं के बीच एक नगण्य परीक्षण आवेश को ले जाने पर प्रति इकाई आवेश का कार्य, उन बिंदुओं के बीच वोल्टेज के रूप में परिभाषित किया जाता है। |
Revision as of 10:47, 13 February 2023
विद्युत क्षेत्र का कार्य एक विद्युत क्षेत्र द्वारा उसके आसपास के आवेशित कण पर किया जाने वाला कार्य है। स्थित कण विद्युत क्षेत्र के साथ एक संपर्क का अनुभव करता है। आवेश की प्रति इकाई कार्य दो बिंदुओं के बीच एक नगण्य परीक्षण आवेश को स्थानांतरित करके परिभाषित किया जाता है, और उन बिंदुओं पर विद्युत क्षमता में अंतर के रूप में व्यक्त किया जाता है। काम किया जा सकता है, उदाहरण के लिए, विद्युत रासायनिक उपकरणों (विद्युत रासायनिक कोशिकाओं) या विभिन्न धातु जंक्शनों द्वारा[clarification needed] वैद्युतवाहक बल उत्पन्न करना।
विद्युत क्षेत्र कार्य औपचारिक रूप से भौतिकी में अन्य बल क्षेत्रों द्वारा कार्य के समतुल्य है,[1] और विद्युत कार्य के लिए औपचारिकता यांत्रिक कार्य के समान है।
भौतिक प्रक्रिया
कण जो स्थानांतरित करने के लिए स्वतंत्र हैं, अगर सकारात्मक रूप से चार्ज किया जाता है, तो सामान्य रूप से कम विद्युत क्षमता (शुद्ध नकारात्मक चार्ज) के क्षेत्रों की ओर जाता है, जबकि नकारात्मक रूप से चार्ज किए गए कण उच्च क्षमता वाले क्षेत्रों (शुद्ध सकारात्मक चार्ज) की ओर स्थानांतरित होते हैं।
उच्च क्षमता वाले क्षेत्र में सकारात्मक आवेश के किसी भी संचलन के लिए विद्युत क्षेत्र के विरुद्ध बाहरी कार्य करने की आवश्यकता होती है, जो उस कार्य के बराबर होता है जो विद्युत क्षेत्र उस धनात्मक आवेश को समान दूरी पर विपरीत दिशा में ले जाने में करता है। इसी तरह, नकारात्मक रूप से आवेशित कण को उच्च क्षमता वाले क्षेत्र से कम क्षमता वाले क्षेत्र में स्थानांतरित करने के लिए सकारात्मक बाहरी कार्य की आवश्यकता होती है।
किरचॉफ का वोल्टेज नियम, इलेक्ट्रिकल और इलेक्ट्रॉनिक परिपथ को नियंत्रित करने वाले सबसे मौलिक नियमों में से एक है, हमें बताता है कि किसी भी इलेक्ट्रिकल परिपथ में वोल्टेज लाभ और गिरावट हमेशा शून्य होती है।
विद्युत कार्य के लिए औपचारिकता का यांत्रिक कार्य के समान प्रारूप है। दो बिंदुओं के बीच एक नगण्य परीक्षण आवेश को ले जाने पर प्रति इकाई आवेश का कार्य, उन बिंदुओं के बीच वोल्टेज के रूप में परिभाषित किया जाता है।
कहाँ
- Q कण का विद्युत आवेश है
- E विद्युत क्षेत्र है, जो किसी स्थान पर उस स्थान पर एक इकाई ('परीक्षण') आवेश से विभाजित बल होता है
- FE कूलम्ब (विद्युत) बल है
- r विस्थापन (वेक्टर) है
- डॉट उत्पाद ऑपरेटर है
गणितीय विवरण
रिक्त स्थान में एक आवेशित वस्तु दी गई है, Q+। Q+ को Q+ के करीब ले जाने के लिए (से प्रारंभ करके , जहां संभावित ऊर्जा = 0, सुविधा के लिए), हमें कूलम्ब क्षेत्र के खिलाफ एक बाहरी बल लगाना होगा और सकारात्मक कार्य किया जाएगा। गणितीय रूप से, एक रूढ़िवादी बल की परिभाषा का उपयोग करते हुए, हम जानते हैं कि हम इस बल को संभावित ऊर्जा प्रवणता से संबंधित कर सकते हैं:
- जहाँ U(r) स्रोत Q से r दूरी पर q+ की संभावित ऊर्जा है। इसलिए, बल के लिए कूलम्ब के नियम को एकीकृत करना और उसका उपयोग करना:
अब, संबंध का उपयोग करें
यह दर्शाने के लिए कि किसी बिंदु आवेश q+ को अनंत से दूरी r तक ले जाने में किया गया बाह्य कार्य है:
यह W की परिभाषा का उपयोग करके और r के संबंध में F को एकीकृत करके समान रूप से प्राप्त किया जा सकता था, जो उपरोक्त संबंध को सिद्ध करेगा।
उदाहरण में दोनों आवेश धनात्मक हैं; यह समीकरण किसी भी आवेश विन्यास पर लागू होता है (क्योंकि आवेशों का गुणनफल उनकी (डी) समानता के अनुसार या तो धनात्मक या ऋणात्मक होगा)। तो उस आवेश को अनंत तक ले जाने में लगने वाला कार्य ठीक वैसा ही होगा जैसा कि पिछले उदाहरण में उस आवेश को वापस उसी स्थिति में धकेलने के लिए आवश्यक कार्य था। यह गणितीय रूप से देखना आसान है, क्योंकि एकीकरण की सीमाओं को उलटने से संकेत उलट जाता है।
समान विद्युत क्षेत्र
जहां विद्युत क्षेत्र स्थिर है (अर्थात विस्थापन का कार्य नहीं है, r), कार्य समीकरण सरल हो जाता है:
या 'फ़ोर्स टाइम्स डिस्टेंस' (उनके बीच के कोण की कोज्या का गुणा)।
विद्युत शक्ति
विद्युत शक्ति एक विद्युत परिपथ में स्थानांतरित ऊर्जा की दर है। आंशिक व्युत्पन्न के रूप में, इसे समय के साथ कार्य के परिवर्तन के रूप में व्यक्त किया जाता है:
- ,
जहां वी वोल्टेज है। कार्य द्वारा परिभाषित किया गया है:
इसलिए
संदर्भ
- ↑ Debora M. Katz (1 January 2016). Physics for Scientists and Engineers: Foundations and Connections. Cengage Learning. pp. 1088–. ISBN 978-1-337-02634-5.