विस्तारक ग्राफ: Difference between revisions

From Vigyanwiki
m (18 revisions imported from alpha:विस्तारक_ग्राफ)
(No difference)

Revision as of 18:21, 20 February 2023

ग्राफ़ सिद्धांत में, विस्तारक ग्राफ़ एक विरल ग्राफ के रूप में होता है, जिसमें वर्टेक्स किनारे या वर्णक्रमीय विस्तार का उपयोग करके प्रबल कनेक्टिविटी गुण होते हैं। विस्तारक निर्माण ने प्रबल कंप्यूटर नेटवर्क के जटिलता सिद्धांत और त्रुटि सुधार कोड के लिए कई अनुप्रयोगों के साथ शुद्ध और अनुप्रयुक्त गणित में अनुसंधान को जन्म दिया है।[1]

परिभाषाएँ

सहज रूप से, विस्तारक ग्राफ परिमित अप्रत्यक्ष मल्टीग्राफ रूप में होते है, जिसमें कोने के प्रत्येक उपसमुच्चय जो बहुत बड़े नहीं होते है, उनकी बड़ी सीमा (ग्राफ सिद्धांत) के रूप में होती है। इन धारणाओं की विभिन्न औपचारिकताएं विस्तारकों की विभिन्न धारणाओं को जन्म देती हैं, जैसे किनारे एक्सपेंडर्स, वर्टेक्स एक्सपेंडर्स और वर्णक्रमीय एक्सपेंडर्स, जैसा कि नीचे परिभाषित किया गया है।

एक डिस्कनेक्ट किया गया ग्राफ़ एक विस्तारक नहीं होते है क्योंकि कनेक्टेड घटक की सीमा रिक्त होती है। प्रत्येक जुड़ा हुआ ग्राफ एक विस्तारक रूप में होता है चूँकि, जुड़े ग्राफों के भिन्न -भिन्न विस्तार पैरामीटर होते हैं। जो पूर्ण ग्राफ में सबसे अच्छा विस्तार गुण के रूप में होते है लेकिन इसकी सबसे बड़ी संभव डिग्री (ग्राफ सिद्धांत) के रूप में होती है। अनौपचारिक रूप से ग्राफ एक अच्छा विस्तारक है यदि इसमें कम डिग्री और उच्च विस्तार पैरामीटर होते हैं।

किनारे का विस्तार

किनारे का विस्तार भी आइसोपेरिमेट्रिक संख्या या चीजर स्थिरांक h(G) एक ग्राफ सिद्धांत का G पर n शिखर के रूप में परिभाषित किया गया है।

जहाँ

जिसे इस रूप में भी लिखा जा सकता है S = E(S, S) साथ S := V(G) \ S का पूरक S और

शीर्षों के उपसमुच्चय के बीच के किनारे A,BV(G).

समीकरण में, न्यूनतम सभी गैर-रिक्त सेटों पर होती है S अधिक से अधिक n2 शिखर और S की किनारा सीमा S है अर्थात, किनारों का सेट S में ठीक एक समापन बिंदु के साथ है।.[2]

सहज रूप से,

ग्राफ़ को दो भागों में विभाजित करने के लिए किनारों की न्यूनतम संख्या को काटने की आवश्यकता होती है। किनारे का विस्तार इस अवधारणा को दो भागों में सबसे छोटी संख्या के साथ विभाजित करके सामान्य करता है। यह देखने के लिए कि कैसे सामान्यीकरण मूल्य को अत्यधिक बदल सकता है, निम्नलिखित उदाहरण पर अवधारणा करते है। तो n शीर्षों की समान संख्या वाले दो पूर्ण ग्राफ़ और उनके शीर्षों को एक से जोड़कर दोनों ग्राफ़ों के बीच n किनारों के रूप में उपयोग करते है। न्यूनतम कटौती n रूप में होती है लेकिन किनारे का विस्तार 1 होता है।


ध्यान दें कि में min |S|, ऑप्टिमाइज़ेशन या तो अधिक समान रूप से किया जा सकता है 0 ≤ |S| ≤ n2 या किसी गैर-रिक्त सबसेट पर, चूंकि . के लिए सही नहीं है h(G) द्वारा सामान्यीकरण के कारण |S|.यदि हम h(G) को सभी गैर-रिक्त सबसेट पर एक अनुकूलन के साथ लिखना चाहते हैं तो हम इसे फिर से लिख सकते हैं


वर्टेक्स विस्तार

वर्टेक्स आइसोपेरिमेट्रिक संख्या hout(G) वर्टेक्स विस्तरण या ग्राफ G का आवर्धन इस रूप में परिभाषित किया गया है।

जहाँ out(S) की बाहरी सीमा S है अर्थात शीर्षों का सेट V(G) \ S कम से कम एक निकटतम के साथ S के रूप में होते है.[3] इस परिभाषा के एक अनुसार जिसे अद्वितीय निकटतम विस्तार कहा जाता है out(S) को V में शीर्षों के सेट द्वारा S में ठीक एक निकटतम के साथ प्रतिस्थापित किया जाता है।.[4]

शीर्ष आइसोपेरिमेट्रिक संख्या hin(G) एक ग्राफ का G द्वारा परिभाषित किया जाता है।

जहाँ की भीतरी सीमा S है, अर्थात शीर्षों का सेट S कम से कम एक निकटतम के साथ V(G) \ S के रूप में होता है.[3]

वर्णक्रमीय विस्तार

जब G नियमित ग्राफ के रूप में होता है, तो विस्तार की एक रेखीय बीजगणितीय परिभाषा d के आसन्न आव्यूह A = A(G) का G, के अभिलक्षणिक मान ​​​​के आधार पर संभव होता है, जहाँ Aij शीर्षों i और j के बीच किनारों की संख्या के रूप में होती है।.[5] क्योंकि A सममित आव्यूह है, वर्णक्रमीय प्रमेय का तात्पर्य है A में n वास्तविक मूल्यवान अभिलक्षणिक मान λ1 ≥ λ2 ≥ … ≥ λn. के रूप में हैं यह ज्ञात है कि ये सभी अभिलक्षणिक मान ​​ [−d, d] में हैं और अधिक विशेष रूप से यह ज्ञात है कि λn = −d यदि और केवल यदि G द्विपक्षीय रूप में है।

अधिक औपचारिक रूप से, हम एक n वर्टेक्स d-नियमित ग्राफ़ को संदर्भित करते हैं

एक के रूप में (n, d, λ)-ग्राफ द्वारा दी गई सीमा (n, d, λ)-ग्राफ λi के लिए i ≠ 1 विस्तारक मिश्रण लेम्मा सहित कई संदर्भों में उपयोगी रूप में होते है।

क्योंकि G नियमित है, समान वितरण साथ ui = 1n सभी के लिए i = 1, …, n का स्थिर वितरण G.रूप में होते है अर्थात हमारे पास है Au = du, और u का अभिलक्षणिक सदिश A है अभिलक्षणिक मान λ1 = d है, जहाँ d, G के शीर्षों की डिग्री (ग्राफ़ सिद्धांत) है।.G का वर्णक्रमीय अंतर को d − λ2 के रूप में परिभाषित किया गया है और यह वर्णक्रमीय विस्तार को मापता है ग्राफ G का।.[6]

यदि हम सेट बनाते हैं तो,

क्योंकि यह एक अभिलक्षणिक सदिश ओर्थोगोनल के अनुरूप सबसे बड़ा अभिलक्षणिक मान है u, इसे रेलेइग़ भागफल का उपयोग करके समान रूप से परिभाषित किया जा जाता है

जहाँ

सदिश का 2-मानक के रूप में होता है।

इन परिभाषाओं के सामान्यीकृत संस्करण भी व्यापक रूप से उपयोग किए जाते हैं और कुछ परिणामों को बताते हुए अधिक सुविधाजनक होते हैं। यहाँ एक आव्यूह 1/dA पर अवधारणा के रूप में होता है, जो कि ग्राफ G. का मार्कोव ट्रांज़िशन आव्यूह होता है इसके अभिलक्षणिक मान ​​-1 और 1 के बीच होते है। जरूरी नहीं कि नियमित ग्राफ़ के लिए, ग्राफ़ के स्पेक्ट्रम को लाप्लासियन मैट्रिक्स के अभिलक्षणिक मान ​​​​का उपयोग करके इसी प्रकार परिभाषित किया जा सकता है। निर्देशित रेखांकन के लिए, आसन्न आव्यूह A के विलक्षण मूल्य पर अवधारणा किया जाता है, जो सममित आव्यूह ATA.के अभिलक्षणिक मान ​​​​की रूट्स के बराबर होते है।

विभिन्न विस्तार गुणों के बीच संबंध

ऊपर परिभाषित विस्तार पैरामीटर एक दूसरे से संबंधित हैं। विशेष रूप से, किसी के लिए d-नियमित ग्राफ G,के लिए इस प्रकार से होते है।

परिणामस्वरुप, निरंतर डिग्री ग्राफ के लिए, वर्टेक्स और किनारे एक्सपेंशन गुणात्मक रूप से समान होते है।

चीजर असमानताएं

कब G, d-नियमित होता है, जिसका अर्थ है कि प्रत्येक शीर्ष डिग्री d का है, तो आइसोपेरिमेट्रिक स्थिरांक h(G) और G. के आसन्न ऑपरेटर के स्पेक्ट्रम में अंतराल d − λ2 के बीच संबंध होता है। d-नियमित ग्राफ का आसन्न ऑपरेटर λ1 = d है और पहला गैर-तुच्छ अभिलक्षणिक मान λ2.है यदि G से जुड़ा हुआ है, तो λ2 < d. डोडिज़ुक के कारण एक असमानता[7] और स्वतंत्र रूप से सावधान अलोन और विटाली मिलमैन[8] बताता है कि [9]

वास्तव में, निचला बाउंड घना है। हाइपरक्यूब ग्राफ के लिए सीमा में निचली सीमा Qn,प्राप्त की जाती है, जहाँ h(G) = 1 और d – λ = 2. ऊपरी सीमा एक चक्र के लिए असामयिक रूप से प्राप्त की जाती है, जहां H(Cn) = 4/n= Θ(1/n) और d – λ = 2-2cos(2/n) ≈ (2/n)^2= Θ(1/n2).[1] में एक अच्छा बाउंड दिया गया है [10] जैसा,


ये असमानताएँ मार्कोव श्रृंखलाओं के लिए बाध्य चीगर से निकटता से संबंधित होती है और इन्हें रीमैनियन ज्यामिति में चीगर की असमानता के असतत संस्करण के रूप में देखा जा सकता है।

वर्टेक्स आइसोपेरिमेट्रिक नंबर और वर्णक्रमीय गैप के बीच समान कनेक्शन का भी अध्ययन किया जाता है:[11]

समान रूप से बोलते हुए, मात्रा h2d, hout, और hin2 सभी ऊपर वर्णक्रमीय अंतराल O(d – λ2).से घिरी हुई हैं।

निर्माण

विस्तारक ग्राफ़ के समूहों को स्पष्ट रूप से बनाने के लिए तीन सामान्य रणनीतियाँ हैं।[12] पहली रणनीति बीजगणितीय और समूह सिद्धांत है, दूसरी रणनीति विश्लेषणात्मक है और योगात्मक संयोजक का उपयोग करती है और तीसरी रणनीति कॉम्बिनेटरियल है और ज़िग ज़ैग और संबंधित ग्राफ़ उत्पादों का उपयोग करती है। नोगा अलोन ने दिखाया कि परिमित ज्यामिति से निर्मित कुछ ग्राफ़ अत्यधिक विस्तार वाले ग्राफ़ के सबसे दुर्लभ उदाहरण के रूप में हैं।[13]

मार्गुलिस-गैबर-गैलिल

केली ग्राफ पर आधारित सार बीजगणित निर्माण विस्तारक ग्राफ़ के विभिन्न रूपों के लिए जाने जाते हैं। निम्नलिखित निर्माण मार्गुलिस के कारण है और गैबर और गैलिल द्वारा इसका विश्लेषण किया गया है।[14] प्रत्येक प्राकृतिक संख्या के लिए n, एक ग्राफ Gn पर अवधारणा करता है, वर्टेक्स सेट के साथ , जहाँ : प्रत्येक शीर्ष के लिए , इसके आठ आसन्न शीर्ष हैं

फिर निम्नलिखित धारण करता है

प्रमेय सभी के लिए n, लेखाचित्र Gn का दूसरा सबसे बड़ा अभिलक्षणिक मान है

रामनुजन ग्राफ्स

एक अलोन-बोपना बाउंड द्वारा, सभी पर्याप्त रूप से बड़े d-नियमित रेखांकन संतुष्ट करते हैं , जहाँ λ2 निरपेक्ष मान में दूसरा सबसे बड़ा अभिलक्षणिक मान है।[15] प्रत्यक्ष परिणाम के रूप में, हम जानते हैं कि प्रत्येक निश्चित के लिए d और , निश्चित रूप से अनेक हैं (n, d, λ)-ग्राफ रामानुजन ग्राफ हैं, d-नियमित रेखांकन जिसके लिए यह सीमा घनी संतोषजनक है [16] :

इसलिए रामानुजन के रेखांकन λ2.का एक विषम रूप से सबसे छोटा संभव मान है यह उन्हें उत्कृष्ट वर्णक्रमीय विस्तारक बनाता है।

अलेक्जेंडर लुबोत्ज़की, फिलिप्स और पीटर इतिहास (1988), मार्गुलिस (1988), और मॉर्गनस्टर्न (1994) दिखाते हैं कि रामानुजन ग्राफ को स्पष्ट रूप से कैसे बनाया जा सकता है।[17]

1985 में, एलोन ने सबसे अधिक अनुमान लगाया d-नियमित रेखांकन पर n कोने पर्याप्त रूप से बड़े के लिए n, लगभग रामानुजन हैं।[18] अर्थात के लिए φ > 0, वे

.को संतुष्ट हैं

2003 में, जोएल फ्रीडमैन दोनों ने अनुमान को सिद्ध किया और निर्दिष्ट किया कि अधिकांश d नियमित ग्राफ़ का क्या मतलब है यह दिखाते हुए कि यादृच्छिक d नियमित ग्राफ़ में हर φ > 0 के लिए प्रायिकता 1 – O(nτ), के साथ हैं जहाँ [19][20]


ज़िग-ज़ैग उत्पाद

2003 में ओमर रीनॉल्ड, सलिल वधान और एवी विगडरसन ने ज़िग-ज़ैग उत्पाद प्रस्तुत किया।[21] मोटे तौर पर बोलते हुए, दो विस्तारक ग्राफों का ज़िग-ज़ैग उत्पाद केवल थोड़ा खराब विस्तार वाला ग्राफ बनाता है। इसलिए, विस्तारक ग्राफ के समूहों के निर्माण के लिए एक ज़िग-ज़ैग उत्पाद का भी उपयोग किया जा सकता है। यदि G एक है (n, m, λ1)-ग्राफ और H एक (m, d, λ1)-ग्राफ, फिर ज़िग-ज़ैग उत्पाद GH एक है (nm, d2, φ1, λ2))-ग्राफ जहां φ निम्नलिखित गुण के रूप में होते है।

  1. यदि λ1 < 1 और λ2 < 1, तब φ1, λ2) < 1;
  2. φ1, λ2) ≤ λ1 + λ2.

विशेष रूप से,[21]:

ध्यान दें कि गुण (1) का तात्पर्य है कि दो विस्तारक ग्राफों का ज़िग-ज़ैग उत्पाद भी एक विस्तारक ग्राफ के रूप में होता है, इस प्रकार ज़िग-ज़ैग उत्पादों का उपयोग विस्तारक ग्राफों के एक समूह को बनाने के लिए किया जाता है।

सहज रूप से, ज़िग-ज़ैग उत्पाद के निर्माण के बारे में निम्नलिखित विधि से सोचा जा सकता है। G के प्रत्येक शीर्ष को m शीर्षों के एक बादल तक उड़ाया जाता है, प्रत्येक शीर्ष से जुड़े एक अलग किनारे से जुड़ा होता है। प्रत्येक शीर्ष को अब (v, k) के रूप में लेबल किया गया है जहाँ v, G के मूल शीर्ष को संदर्भित करता है और k इसका किनारा v. दो शिखर, (v, k) और (w,l) जुड़े हुए हैं। निम्नलिखित अनुक्रम के माध्यम से (v, k) को (w, l) तक जाने के लिए उपयोग करते है।

  1. ज़िग - H के किनारे का उपयोग करके (v, k) को (v, k' ) पर जाते है।
  2. (w, l' ). पर जाने के लिए G में किनारे k'' का उपयोग करके घन पर जाते है।
  3. ज़ैग - H. के किनारे का उपयोग करके(w, l' ) को (w, l) पर जाते है।.[21]


यादृच्छिक निर्माण

ऐसे कई परिणाम हैं जो संभाव्य तर्कों के माध्यम से अच्छे विस्तार गुणों वाले ग्राफ़ के अस्तित्व को दर्शाते हैं। वास्तव में, विस्तारकों के अस्तित्व को सबसे पहले पिंस्कर ने सिद्ध किया था[22] जिसने दिखाया कि एक यादृच्छिक रूप से चुने गए के लिए n शीर्ष छोड़ दिया d नियमित द्विपक्षीय ग्राफ, |N(S)| ≥ (d – 2)|S| कोने के सभी सबसेट के लिए |S| ≤ cdn उच्च संभावना के साथ, जहाँ cd एक स्थिरांक है जो d पर निर्भर करता है जो कि O(d-4).है। अलोन और रोचमैन [23] ने दिखाया कि क्रम n के प्रत्येक समूह G के लिए और प्रत्येक 1 > ε > 0, में कुछ c(ε) > 0 होता है जैसे कि G साथ c(ε) log2 n जनरेटर के साथ G पर केली ग्राफ एक ε विस्तारक है अर्थात उच्च संभावना के साथ 1 – ε , से कम दूसरा अभिलक्षणिक मान है।।

अनुप्रयोग और उपयोगी गुण

विस्तारकों के लिए मूल प्रेरणा आर्थिक रूप से प्रबल नेटवर्क (फोन या कंप्यूटर) का निर्माण करना है: सीमाबद्ध डिग्री वाला एक विस्तारक सभी उपसमुच्चयों के लिए आकार (कोने की संख्या) के साथ रैखिक रूप से बढ़ने वाले किनारों की संख्या के साथ एक स्पर्शोन्मुख प्रबल ग्राफ है।

एक्सपैंडर ग्राफ़ को कंप्यूटर विज्ञान में कलन विधि, विस्तारक कोड, एक्सट्रैक्टर (गणित), छद्म यादृच्छिक जनरेटर, छँटाई नेटवर्क डिजाइन करने में व्यापक अनुप्रयोग मिले हैं।Ajtai, Komlós & Szemerédi (1983)) और प्रबल कंप्यूटर नेटवर्क। कम्प्यूटेशनल जटिलता सिद्धांत में कई महत्वपूर्ण परिणामों के प्रमाण में भी उनका उपयोग किया गया है, जैसे एसएल (जटिलता) = एल (जटिलता) (Reingold (2008)) और पीसीपी प्रमेय दिनूर (2007) क्रिप्टोग्राफी में, विस्तारक ग्राफ़ का उपयोग है फलन के निर्माण के लिए किया जाता है।

एक 2006 एक्सपैंडर ग्राफ़ के सर्वेक्षण में, हूरी, लिनियल, और विगडरसन ने निम्न के अध्ययन को विभाजित किया विस्तारक ग्राफ को चार श्रेणियों में विभाजित करता है: चरम ग्राफ सिद्धांत, विशिष्ट व्यवहार, स्पष्ट निर्माण और कलन विधि । चरम समस्याएं विस्तार पैरामीटरों की सीमा पर ध्यान केंद्रित करती हैं, जबकि विशिष्ट व्यवहार समस्याएं यह बताती हैं कि यादृच्छिक ग्राफ पर विस्तार पैरामीटर कैसे वितरित किए जाते हैं। स्पष्ट निर्माण ग्राफ़ के निर्माण पर ध्यान केंद्रित करते हैं जो कुछ मापदंडों का अनुकूलन करते हैं, और एल्गोरिथम प्रश्न मापदंडों के मूल्यांकन और अनुमान का अध्ययन करते हैं।

एक्सपैंडर मिक्सिंग लेम्मा

लेम्मा को मिलाने वाला विस्तारक बताता है कि एक के लिए (n, d, λ)-ग्राफ़, किसी भी दो उपसमूहों के लिए S, TV, बीच किनारों की संख्या S और T लगभग वह है जो आप यादृच्छिक रूप से अपेक्षा करेंगे d-नियमित ग्राफ। सन्निकटन अच्छा छोटा है λ है। एक यादृच्छिक में d-रेगुलर ग्राफ़, साथ ही एक एर्दोस-रेनी मॉडल में|एर्डोस-रेनी रैंडम ग्राफ़ किनारे प्रायिकता के साथ dn, हमें उम्मीद है dn • |S| • |T| किनारों के बीच S और T.

अधिक औपचारिक रूप से, चलो E(S, T) के बीच किनारों की संख्या को निरूपित करें S और T. यदि दो सेट भिन्न नहीं होते हैं, तो उनके चौराहे के किनारों को दो बार गिना जाता है, अर्थात

फिर लेम्मा को मिलाने वाला विस्तारक कहता है कि निम्नलिखित असमानता है:

के अनेक गुण (n, d, λ)-ग्राफ विस्तारक मिश्रण लेम्मा के परिणाम हैं, जिनमें निम्नलिखित सम्मलित हैं।[1]

  • एक ग्राफ का एक स्वतंत्र सेट (ग्राफ सिद्धांत) शीर्षों का एक उपसमुच्चय होता है जिसमें दो आसन्न कोने नहीं होते हैं। एक में (n, d, λ)-ग्राफ, एक स्वतंत्र सेट का आकार अधिकतम होता है λnd.
  • ग्राफ का ग्राफ रंगना G, χ(G), आवश्यक रंगों की न्यूनतम संख्या है, जिससे कि आसन्न शीर्षों के भिन्न -भिन्न रंग हों। हॉफमैन ने दिखाया dλ ≤ χ(G),[24] जबकि अलोन, क्रिवेलेविच और सुदाकोव ने दिखाया कि यदि d < 2n3, तब[25]

  • किसी ग्राफ़ की दूरी (ग्राफ़ सिद्धांत) दो शीर्षों के बीच की अधिकतम दूरी होती है, जहाँ दो शीर्षों के बीच की दूरी को उनके बीच का सबसे छोटा पथ परिभाषित किया जाता है। चुंग ने दिखाया कि एक का व्यास (n, d, λ)-ग्राफ अधिकतम है[26]

एक्सपैंडर वॉक सैंपलिंग

चेरनॉफ़बाध्य बताता है कि, रेंज में एक यादृच्छिक चर से कई स्वतंत्र नमूनों का नमूना लेते समय [−1, 1], उच्च संभावना के साथ हमारे नमूनों का औसत यादृच्छिक चर की अपेक्षा के करीब है। एक्सपैंडर वॉक सैंपलिंग लेम्मा, के कारण अजताई, कोमलोस और ज़ेमेरेडी (1987) और गिलमैन (1998), बताता है कि विस्तारक ग्राफ पर चलने से नमूना लेने पर भी यह सच होता है। यह विशेष रूप से यादृच्छिकीकरण के सिद्धांत में उपयोगी है, क्योंकि एक्सपैंडर वॉक के अनुसार सैंपलिंग स्वतंत्र रूप से सैंपलिंग की तुलना में बहुत कम रैंडम बिट्स का उपयोग करता है।

एकेएस सॉर्टिंग नेटवर्क और अनुमानित पड़ाव

सॉर्टिंग नेटवर्क इनपुट्स का एक सेट लेते हैं और इनपुट्स को सॉर्ट करने के लिए समानांतर चरणों की एक श्रृंखला करते हैं। एक समानांतर कदम में किसी भी संख्या में असंबद्ध तुलना और संभावित रूप से जोड़े गए इनपुट की अदला-बदली करना सम्मिलित है। एक नेटवर्क की गहराई उसके द्वारा उठाए जाने वाले समानांतर कदमों की संख्या से दी जाती है। विस्तारक ग्राफ एकेएस सॉर्टिंग नेटवर्क में एक महत्वपूर्ण भूमिका निभाते हैं जो गहराई O(log n).प्राप्त करता है। चूंकि, यह एक छँटाई नेटवर्क के लिए सबसे अच्छी प्रकार से ज्ञात गहराई है, लेकिन विस्तारकों पर निर्भरता व्यावहारिक उपयोग के लिए स्थिर सीमा को बहुत बड़ा बना देती है।

एकेएस सॉर्टिंग नेटवर्क के भीतर, विस्तारक रेखांकन का उपयोग बंधी हुई गहराई ε-आधा करने के लिए किया जाता है। एक ε-हॉल्वर इनपुट के रूप में (1, …, n) की लंबाई n क्रमचय लेता है और इनपुट को दो अलग-अलग सेटों A और B में आधा कर देता है जैसे कि प्रत्येक पूर्णांक k ≤ n⁄2 के लिए k के सबसे छोटे इनपुट में सबसे अधिक εk होता है बी और सबसे अधिक εk के सबसे बड़े इनपुट A.में हैं। सेट A और B एक हैं εआधा करते हैं।

अजताई, कोमलोस और ज़ेमेरेडी 1983 के बाद एक गहराई d ε- हॉल्वर का निर्माण निम्नानुसार किया जाता है। समान आकार के भागों X और Y के साथ एक n शीर्ष, डिग्री d द्विदलीय विस्तारक लें, जैसे कि अधिकतम εn आकार के शीर्षों के प्रत्येक उपसमुच्चय में कम से कम 1 – ε/ε निकटतम रूप में होता है।

ग्राफ़ के कोने को उन रजिस्टरों के रूप में माना जा सकता है जिनमें इनपुट होते हैं और किनारों को तारों के रूप में माना जा सकता है जो दो रजिस्टरों के इनपुट की तुलना करते हैं। प्रारंभ में, मनमाने ढंग से आधे इनपुट को X में और आधे इनपुट को Y में रखें और किनारों को d पूर्ण मिलान में विघटित करें। लक्ष्य X के साथ समाप्त होना है जिसमें मोटे तौर पर इनपुट का छोटा आधा भाग होता है और Y में इनपुट का बड़ा आधा भाग होता है। इसे प्राप्त करने के लिए इस मिलान के किनारों द्वारा जोड़े गए रजिस्टरों की तुलना करके प्रत्येक मिलान को क्रमिक रूप से संसाधित करें और किसी भी इनपुट को ठीक करें जो क्रम से बाहर हैं। विशेष रूप से, मिलान के प्रत्येक किनारे के लिए, यदि बड़ा इनपुट एक्स में रजिस्टर में है और छोटा इनपुट वाई में रजिस्टर में है तो दो इनपुट स्वैप करें ताकि छोटा एक्स में हो और बड़ा वाई में हो। यह स्पष्ट है कि इस प्रक्रिया में d समानांतर चरण के रूप में होते हैं

सभी d राउंड के बाद A को X और B में रजिस्टरों में इनपुट का सेट होने के लिए Y में रजिस्टरों में इनपुट का सेट होने के लिए ε आधा करते है। इसे देखने के लिए, ध्यान दें कि यदि X में कोई रजिस्टर u और Y में v एक किनारे uv से जुड़ा है तो इस किनारे के साथ मिलान करने के बाद संसाधित किया जाता है, u में इनपुट v से कम होता है। इसके अतिरिक्त, यह गुण बाकी प्रक्रिया के दौरान सही रहती है। अब मान लीजिए कि कुछ kn2 के लिए इनपुट (1, …, k) के εk से अधिक B में हैं। फिर ग्राफ के विस्तार गुणों द्वारा, Y में इन इनपुट के रजिस्टर कम से कम जुड़े हुए हैं 1 – ε/εk में अंकित करता है, X. कुल मिलाकर, यह k से अधिक रजिस्टर का गठन करता है, इसलिए X में कुछ रजिस्टर A होना चाहिए, जो Y में कुछ रजिस्टर B से जुड़ा हो, जैसे कि A का अंतिम इनपुट (1, ..., k) में नहीं है, जबकि अंतिम बी का इनपुट है।चूँकि यह पिछली संपत्ति का उल्लंघन करता है और इस प्रकार आउटपुट सेट ए और बी को ε-आधा होना चाहिए।

यह भी देखें

टिप्पणियाँ

  1. 1.0 1.1 1.2 Hoory, Linial & Wigderson (2006)
  2. Definition 2.1 in Hoory, Linial & Wigderson (2006)
  3. 3.0 3.1 Bobkov, Houdré & Tetali (2000)
  4. Alon & Capalbo (2002)
  5. cf. Section 2.3 in Hoory, Linial & Wigderson (2006)
  6. This definition of the spectral gap is from Section 2.3 in Hoory, Linial & Wigderson (2006)
  7. Dodziuk 1984.
  8. Alon & Spencer 2011.
  9. Theorem 2.4 in Hoory, Linial & Wigderson (2006)
  10. B. Mohar. Isoperimetric numbers of graphs. J. Combin. Theory Ser. B, 47(3):274–291, 1989.
  11. See Theorem 1 and p.156, l.1 in Bobkov, Houdré & Tetali (2000). Note that λ2 there corresponds to 2(d − λ2) of the current article (see p.153, l.5)
  12. see, e.g., Yehudayoff (2012)
  13. Alon, Noga (1986). "Eigenvalues, geometric expanders, sorting in rounds, and ramsey theory". Combinatorica. 6 (3): 207–219. CiteSeerX 10.1.1.300.5945. doi:10.1007/BF02579382. S2CID 8666466.
  14. see, e.g., p.9 of Goldreich (2011)
  15. Theorem 2.7 of Hoory, Linial & Wigderson (2006)
  16. Definition 5.11 of Hoory, Linial & Wigderson (2006)
  17. Theorem 5.12 of Hoory, Linial & Wigderson (2006)
  18. Alon, Noga (1986-06-01). "Eigenvalues and expanders". Combinatorica (in English). 6 (2): 83–96. doi:10.1007/BF02579166. ISSN 1439-6912. S2CID 41083612.
  19. Friedman, Joel (2004-05-05). "A proof of Alon's second eigenvalue conjecture and related problems". arXiv:cs/0405020.
  20. Theorem 7.10 of Hoory, Linial & Wigderson (2006)
  21. 21.0 21.1 21.2 Reingold, O.; Vadhan, S.; Wigderson, A. (2000). "Entropy waves, the zig-zag graph product, and new constant-degree expanders and extractors". Proceedings 41st Annual Symposium on Foundations of Computer Science. IEEE Comput. Soc: 3–13. doi:10.1109/sfcs.2000.892006. ISBN 0-7695-0850-2. S2CID 420651.
  22. Pinkser, M. (1973). "On the Complexity of a Concentrator". SIAM Journal on Computing. SIAM. CiteSeerX 10.1.1.393.1430.
  23. Alon, N.; Roichman, Y. (1994). "Random Cayley graphs and Expanders". Random Structures and Algorithms. Wiley Online Library. 5 (2): 271–284. doi:10.1002/rsa.3240050203.
  24. Hoffman, A. J.; Howes, Leonard (1970). "On Eigenvalues and Colorings of Graphs, Ii". Annals of the New York Academy of Sciences (in English). 175 (1): 238–242. Bibcode:1970NYASA.175..238H. doi:10.1111/j.1749-6632.1970.tb56474.x. ISSN 1749-6632. S2CID 85243045.
  25. Alon, Noga; Krivelevich, Michael; Sudakov, Benny (1999-09-01). "Coloring Graphs with Sparse Neighborhoods". Journal of Combinatorial Theory. Series B (in English). 77 (1): 73–82. doi:10.1006/jctb.1999.1910. ISSN 0095-8956.
  26. Chung, F. R. K. (1989). "Diameters and eigenvalues". Journal of the American Mathematical Society (in English). 2 (2): 187–196. doi:10.1090/S0894-0347-1989-0965008-X. ISSN 0894-0347.


संदर्भ



पाठ्यपुस्तकें और सर्वेक्षण


शोध लेख


हाल के अनुप्रयोग


बाहरी संबंध