वास्तविक प्रोजेक्टिव स्पेस: Difference between revisions
No edit summary |
No edit summary |
||
Line 33: | Line 33: | ||
=== चिकनी संरचना === | === चिकनी संरचना === | ||
वास्तविक प्रक्षेप्य स्थान चिकने कई गुना हैं। | वास्तविक प्रक्षेप्य स्थान चिकने कई गुना हैं। S<sup>n</sup> पर, समरूप निर्देशांकों में, (x<sub>1</sub>, ..., X<sub>''n''+1</sub>), उपसमुच्चय U<sub>i</sub> को X<sub>i</sub> ≠ 0 के साथ मानें। 'RP<sup>n</sup>' और समन्वय संक्रमण कार्य सुचारू हैं। यह RP<sup>n</sup> को एक [[चिकनी संरचना]] संरचना देता है। प्रत्येक U<sub>i</sub>R<sup>n</sup> में दो खुली इकाई गेंदों के असंयुक्त संघ के लिए होमोमोर्फिक है। | ||
'''सीडब्ल्यू कॉम्प्लेक्स के रूप में संरचना''' | |||
रियल प्रक्षेप्य स्पेस RP<sup>n</sup> प्रत्येक आयाम में 1 सेल वाले CW कॉम्प्लेक्स की संरचना को स्वीकार करता है। | रियल प्रक्षेप्य स्पेस RP<sup>n</sup> प्रत्येक आयाम में 1 सेल वाले CW कॉम्प्लेक्स की संरचना को स्वीकार करता है। | ||
सजातीय निर्देशांक में (x<sub>1</sub> ... | सजातीय निर्देशांक में (x<sub>1</sub> ... X<sub>''n''+1</sub>) S<sup>n</sup> पर, निर्देशांक निकटतम U<sub>1</sub> = {(X<sub>1</sub> ... X<sub>''n''+1</sub>) | X<sub>1</sub> ≠ 0} को n-डिस्क D<sup>n</sup> के आंतरिक भाग से पहचाना जा सकता है। जब X<sub>i</sub>= 0, के पास RP<sup>n−1</sup> है। इसलिए 'RP<sup>n</sup>' का n−1 संरचना 'RP<sup>n−1</sup>' है, और संलग्न मानचित्र f: S<sup>n−1</sup> → 'RP'<sup>n−1</sup> 2-to-1 कवरिंग मैप है। कोई लगा सकता है | ||
<math display="block">\mathbf{RP}^n = \mathbf{RP}^{n-1} \cup_f D^n.</math> | <math display="block">\mathbf{RP}^n = \mathbf{RP}^{n-1} \cup_f D^n.</math> | ||
इंडक्शन से पता चलता है कि RP<sup>n</sup> CW कॉम्प्लेक्स है जिसमें n तक के प्रत्येक आयाम में 1 सेल है। | इंडक्शन से पता चलता है कि RP<sup>n</sup> CW कॉम्प्लेक्स है जिसमें n तक के प्रत्येक आयाम में 1 सेल है। | ||
सेलों शूबर्ट सेलों हैं, जैसा कि [[झंडा कई गुना]] पर है। अर्थात्, पूर्ण ध्वज (रैखिक बीजगणित) लें (मानक ध्वज कहें) 0 = V<sub>0</sub> <V<sub>1</sub> <...< V<sub>n</sub>; तब बंद k-सेल वे रेखाएँ होती हैं जो V<sub>k</sub> में स्थित होती हैं. इसके अलावा ओपन के-सेल (के-सेल का इंटीरियर) {{math|''V<sub>k</sub>'' \ ''V''<sub>''k''−1</sub>}} (V<sub>k</sub> में लाइनें लेकिन V<sub>''k''−1</sub> नहीं) लाइन में है . | |||
सजातीय निर्देशांक (ध्वज के संबंध में) में, | सजातीय निर्देशांक (ध्वज के संबंध में) में, सेल हैं | ||
<math display="block"> | <math display="block"> | ||
\begin{array}{c} | \begin{array}{c} | ||
Line 52: | Line 53: | ||
{[}*:*:*:\dots:*]. | {[}*:*:*:\dots:*]. | ||
\end{array}</math> | \end{array}</math> | ||
यह नियमित सीडब्ल्यू संरचना नहीं है, क्योंकि संलग्न मानचित्र 2-से-1 हैं। हालाँकि, इसका आवरण गोले पर नियमित CW संरचना है, जिसमें प्रत्येक आयाम में 2 | यह नियमित सीडब्ल्यू संरचना नहीं है, क्योंकि संलग्न मानचित्र 2-से-1 हैं। हालाँकि, इसका आवरण गोले पर नियमित CW संरचना है, जिसमें प्रत्येक आयाम में 2 सेलों हैं; वास्तव में, क्षेत्र पर न्यूनतम नियमित सीडब्ल्यू संरचना है। | ||
चिकनी संरचना के प्रकाश में, [[मोर्स समारोह]] का अस्तित्व RP | चिकनी संरचना के प्रकाश में, [[मोर्स समारोह]] का अस्तित्व RP<sup>n</sup> दिखाएगा सीडब्ल्यू कॉम्प्लेक्स है। ऐसा ही कार्य सजातीय निर्देशांक में दिया जाता है, | ||
<math display="block">g(x_1, \ldots, x_{n+1}) = \sum_{i=1} ^{n+1} i \cdot |x_i|^2.</math> | <math display="block">g(x_1, \ldots, x_{n+1}) = \sum_{i=1} ^{n+1} i \cdot |x_i|^2.</math> | ||
प्रत्येक मोहल्ले में यू<sub>i</sub>, g का गैर-डीजेनरेट महत्वपूर्ण बिंदु (0,...,1,...,0) है जहां 1 मोर्स इंडेक्स i के साथ i-वें स्थान पर होता है। यह 'RP | प्रत्येक मोहल्ले में यू<sub>i</sub>, g का गैर-डीजेनरेट महत्वपूर्ण बिंदु (0,...,1,...,0) है जहां 1 मोर्स इंडेक्स i के साथ i-वें स्थान पर होता है। यह 'RP<sup>n</sup>' दिखाता है प्रत्येक आयाम में 1 सेल वाला CW कॉम्प्लेक्स है। | ||
=== [[टॉटोलॉजिकल बंडल]] | === [[टॉटोलॉजिकल बंडल|टॉटोलॉजिकल बंडलों]] === | ||
रियल प्रक्षेप्य स्पेस के ऊपर नेचुरल [[लाइन बंडल]] होता है, जिसे टॉटोलॉजिकल बंडल कहा जाता है। अधिक सटीक रूप से, इसे टॉटोलॉजिकल सबबंडल कहा जाता है, और दोहरी n-डायमेंशनल बंडल भी होता है जिसे टॉटोलॉजिकल भागफल बंडल कहा जाता है। | रियल प्रक्षेप्य स्पेस के ऊपर नेचुरल [[लाइन बंडल]] होता है, जिसे टॉटोलॉजिकल बंडल कहा जाता है। अधिक सटीक रूप से, इसे टॉटोलॉजिकल सबबंडल कहा जाता है, और दोहरी n-डायमेंशनल बंडल भी होता है जिसे टॉटोलॉजिकल भागफल बंडल कहा जाता है। | ||
Line 64: | Line 65: | ||
=== होमोटॉपी समूह === | === होमोटॉपी समूह === | ||
RP के उच्च होमोटॉपी समूह<sup>n</sup> वास्तव में S | RP के उच्च होमोटॉपी समूह<sup>n</sup> वास्तव में S<sup>n</sup> के उच्च होमोटॉपी समूह हैं, [[कंपन]] से जुड़े होमोटॉपी पर लंबे सटीक अनुक्रम के माध्यम से। | ||
स्पष्ट रूप से, फाइबर बंडल है: <math display="block">\mathbf{Z}_2 \to S^n \to \mathbf{RP}^n.</math> | स्पष्ट रूप से, फाइबर बंडल है: <math display="block">\mathbf{Z}_2 \to S^n \to \mathbf{RP}^n.</math> | ||
Line 80: | Line 81: | ||
=== समरूपता === | === समरूपता === | ||
उपरोक्त सीडब्ल्यू संरचना से जुड़े सेलुलर चेन कॉम्प्लेक्स में प्रत्येक आयाम 0, ..., n में 1 सेल है। प्रत्येक आयामी k के लिए, सीमा मानचित्र d<sub>k</sub>: | उपरोक्त सीडब्ल्यू संरचना से जुड़े सेलुलर चेन कॉम्प्लेक्स में प्रत्येक आयाम 0, ..., n में 1 सेल है। प्रत्येक आयामी k के लिए, सीमा मानचित्र ''d<sub>k</sub>'' : δ''D<sup>k</sup>'' → '''RP'''<sup>''k''−1</sup>/'''RP'''<sup>''k''−2</sup> वह मानचित्र है जो भूमध्य रेखा को S<sup>k−1</sup> पर गिराता है, और फिर प्रतिव्यासांत बिंदुओं की पहचान करता है। विषम (प्रतिक्रिया सम) आयामों में, इसकी डिग्री 0 (प्रतिक्रिया 2) है: | ||
<math display="block">\deg(d_k) = 1 + (-1)^k.</math> | <math display="block">\deg(d_k) = 1 + (-1)^k.</math> |
Revision as of 12:14, 15 February 2023
गणित में, वास्तविक प्रक्षेपी स्थान, या द्वारा निरूपित, मूल 0 में से होकर गुजरने वाली रेखाओं का सांस्थितिक स्थान है। यह आयाम n का कॉम्पैक्ट स्मूथ मैनिफोल्ड हैं, और ग्रासमानियन स्पेस का विशेष मामला है।
मूल गुण
निर्माण
जैसा कि सभी प्रक्षेप्य स्पेस के साथ होता है, सभी वास्तविक संख्याओं के लिए λ ≠ 0 के लिए तुल्यता संबंध के x ∼ λx के अंतर्गत Rn+1 ∖ {0} का भागफल स्थान (टोपोलॉजी) लेकर RPn बनता है। सभी x के लिए Rn+1 ∖ {0} कोई हमेशा λ पा सकता है जैसे कि λx में मापदंड (गणित) 1 है। ठीक ऐसे दो λ हैं जो चिह्न से भिन्न हैं।
इस प्रकार 'RPn को Rn+1 में इकाई n-क्षेत्र, Sn के प्रतिमुख बिंदुओं की पहचान करके भी बनाया जा सकता है।
आगे Sn के ऊपरी गोलार्द्ध तक सीमित किया जा सकता है और केवल बाउंडिंग भूमध्य रेखा पर प्रतिलोम बिंदुओं की पहचान करें। इससे पता चलता है कि 'RPn बंद n-डायमेंशनल डिस्क, Dn के समतुल्य भी है, सीमा, ∂Dn = Sn−1, पर प्रतिलोम बिंदुओं के साथ पहचान किया था।
कम आयामी उदाहरण
- RP1 वास्तविक प्रक्षेपी रेखा कहलाती है, जो वृत्त के समतुल्य टोपोलॉजी है।
- RP2 को वास्तविक प्रक्षेपी तल कहा जाता है। यह स्थान R3 में एम्बेडिंग नहीं किया जा सकता है। हालांकि इसे R4 में एम्बेड किया जा सकता है और R3 में विसर्जन (गणित) हो सकता है (यहाँ देखें)। प्रक्षेप्य n-स्पेस के लिए एंबेडेबिलिटी और इमर्सिबिलिटी के सवालों का अच्छी तरह से अध्ययन किया गया है।[1]
- RP3 SO(3) के लिए (भिन्नरूपी) है, इसलिए समूह संरचना को स्वीकार करता है; कवरिंग मैप S3 → RP3 समूह स्पिन(3) → SO(3) का मानचित्र है, जहां स्पिन समूह(3) लाइ समूह है जो SO(3) का सार्वभौमिक आवरण है।
टोपोलॉजी
n-स्फीयर पर प्रतिलोम मानचित्र (x से -x को भेजने वाला नक्शा) Sn पर Z2 चक्रीय समूह क्रिया उत्पन्न करता है। जैसा कि ऊपर बताया गया है, इस क्रिया के लिए कक्षा स्थान 'RPn है. यह क्रिया वास्तविक में कवरिंग स्पेस क्रिया है जो Sn को RPn के दोहरे आवरण (टोपोलॉजी) के रूप में देती है। चूंकि Sn केवल n ≥ 2 के लिए जुड़ा हुआ है, यह इन मामलों में सार्वभौमिक आवरण के रूप में भी कार्य करता है। यह इस प्रकार है कि RPn का मौलिक समूह Z2 है जब n > 1. (जब n = 1 मूल समूह S1 के साथ होमोमोर्फिज्म के कारण 'Z' होता है)। मौलिक समूह के लिए जनरेटर एस में प्रतिलोम बिंदुओं को RPn से जोड़ने वाले किसी भी वक्र को प्रक्षेपित करके प्राप्त किया जाता है।
प्रक्षेप्य n-स्पेस कॉम्पैक्ट, जुड़ा हुआ है, और ऑर्डर 2 के चक्रीय समूह के लिए मौलिक समूह आइसोमॉर्फिक है: इसका सार्वभौमिक कवरिंग स्पेस n-स्फीयर से एंटीपोडी क्वांटेंट मैप द्वारा दिया जाता है, जो साधारण कनेक्टेड स्पेस है। यह डबल कवरिंग ग्रुप है। Rp पर एंटीपोड मानचित्र का चिह्न है, इसलिए यह अभिविन्यास-संरक्षण है यदि और केवल यदि p सम है। अभिविन्यास चरित्र इस प्रकार है: नॉन-ट्रिविअल लूप इन के समान अभिविन्यास पर एक्ट करें, इसलिए RPn ओरिएंटेबल है अगर और केवल अगर n + 1 सम है, अर्थात n विषम है।[2]
प्रक्षेप्य n-स्पेस वास्तव में R(n+1)2 के सबमनीफोल्ड के लिए भिन्न है जिसमें सभी सममित हैं (n + 1) × (n + 1) ट्रेस (रैखिक बीजगणित) 1 के मैट्रिसेस जो कि उदासीन रैखिक परिवर्तन भी हैं।[citation needed]
वास्तविक प्रक्षेप्य रिक्त स्थान की ज्यामिति
वास्तविक प्रक्षेप्य स्थान निरंतर सकारात्मक स्केलर वक्रता मीट्रिक को स्वीकार करता है, जो मानक गोल क्षेत्र (प्रतिलोम मानचित्र स्थानीय रूप से आइसोमेट्री) द्वारा डबल कवर से आ रहा है।
मानक गोल मीट्रिक के लिए, इसमें अनुभागीय वक्रता समान रूप से 1 है।
मानक गोल मीट्रिक में, प्रक्षेप्य स्थान का माप गोले के माप का ठीक आधा है।
चिकनी संरचना
वास्तविक प्रक्षेप्य स्थान चिकने कई गुना हैं। Sn पर, समरूप निर्देशांकों में, (x1, ..., Xn+1), उपसमुच्चय Ui को Xi ≠ 0 के साथ मानें। 'RPn' और समन्वय संक्रमण कार्य सुचारू हैं। यह RPn को एक चिकनी संरचना संरचना देता है। प्रत्येक UiRn में दो खुली इकाई गेंदों के असंयुक्त संघ के लिए होमोमोर्फिक है।
सीडब्ल्यू कॉम्प्लेक्स के रूप में संरचना
रियल प्रक्षेप्य स्पेस RPn प्रत्येक आयाम में 1 सेल वाले CW कॉम्प्लेक्स की संरचना को स्वीकार करता है।
सजातीय निर्देशांक में (x1 ... Xn+1) Sn पर, निर्देशांक निकटतम U1 = {(X1 ... Xn+1) | X1 ≠ 0} को n-डिस्क Dn के आंतरिक भाग से पहचाना जा सकता है। जब Xi= 0, के पास RPn−1 है। इसलिए 'RPn' का n−1 संरचना 'RPn−1' है, और संलग्न मानचित्र f: Sn−1 → 'RP'n−1 2-to-1 कवरिंग मैप है। कोई लगा सकता है
सेलों शूबर्ट सेलों हैं, जैसा कि झंडा कई गुना पर है। अर्थात्, पूर्ण ध्वज (रैखिक बीजगणित) लें (मानक ध्वज कहें) 0 = V0 <V1 <...< Vn; तब बंद k-सेल वे रेखाएँ होती हैं जो Vk में स्थित होती हैं. इसके अलावा ओपन के-सेल (के-सेल का इंटीरियर) Vk \ Vk−1 (Vk में लाइनें लेकिन Vk−1 नहीं) लाइन में है .
सजातीय निर्देशांक (ध्वज के संबंध में) में, सेल हैं
चिकनी संरचना के प्रकाश में, मोर्स समारोह का अस्तित्व RPn दिखाएगा सीडब्ल्यू कॉम्प्लेक्स है। ऐसा ही कार्य सजातीय निर्देशांक में दिया जाता है,
टॉटोलॉजिकल बंडलों
रियल प्रक्षेप्य स्पेस के ऊपर नेचुरल लाइन बंडल होता है, जिसे टॉटोलॉजिकल बंडल कहा जाता है। अधिक सटीक रूप से, इसे टॉटोलॉजिकल सबबंडल कहा जाता है, और दोहरी n-डायमेंशनल बंडल भी होता है जिसे टॉटोलॉजिकल भागफल बंडल कहा जाता है।
वास्तविक प्रक्षेप्य स्थानों की बीजगणितीय टोपोलॉजी
होमोटॉपी समूह
RP के उच्च होमोटॉपी समूहn वास्तव में Sn के उच्च होमोटॉपी समूह हैं, कंपन से जुड़े होमोटॉपी पर लंबे सटीक अनुक्रम के माध्यम से।
स्पष्ट रूप से, फाइबर बंडल है:
होमोटॉपी समूह हैं:
समरूपता
उपरोक्त सीडब्ल्यू संरचना से जुड़े सेलुलर चेन कॉम्प्लेक्स में प्रत्येक आयाम 0, ..., n में 1 सेल है। प्रत्येक आयामी k के लिए, सीमा मानचित्र dk : δDk → RPk−1/RPk−2 वह मानचित्र है जो भूमध्य रेखा को Sk−1 पर गिराता है, और फिर प्रतिव्यासांत बिंदुओं की पहचान करता है। विषम (प्रतिक्रिया सम) आयामों में, इसकी डिग्री 0 (प्रतिक्रिया 2) है:
अनंत वास्तविक प्रक्षेप्य स्थान
अनंत वास्तविक प्रक्षेप्य स्पेस को सीमित प्रक्षेप्य स्पेस की प्रत्यक्ष सीमा या संघ के रूप में बनाया गया है:
इस स्थान का दोहरा आवरण अनंत गोला है , जो संविदात्मक है। अनंत प्रक्षेपी स्थान इसलिए ईलेनबर्ग-मैकलेन अंतरिक्ष K('Z') है।2, 1).
प्रत्येक गैर-ऋणात्मक पूर्णांक q के लिए, मॉड्यूल 2 समरूपता समूह .
इसका कोहोलॉजी रिंग मोडुलो (शब्दजाल) 2 है
कहाँ पहला स्टिफ़ेल-व्हिटनी वर्ग है: यह मुफ़्त है -बीजगणित है , जिसकी डिग्री 1 है।
यह भी देखें
- जटिल प्रक्षेप्य स्पेस
- क्वाटरनियोनिक प्रक्षेप्य स्पेस
- लेंस स्थान
- वास्तविक प्रक्षेपी विमान
टिप्पणियाँ
- ↑ See the table of Don Davis for a bibliography and list of results.
- ↑ J. T. Wloka; B. Rowley; B. Lawruk (1995). Boundary Value Problems for Elliptic Systems. Cambridge University Press. p. 197. ISBN 978-0-521-43011-1.
संदर्भ
- Bredon, Glen. Topology and geometry, Graduate Texts in Mathematics, Springer Verlag 1993, 1996
- Davis, Donald. "Table of immersions and embeddings of real projective spaces". Retrieved 22 Sep 2011.
- Hatcher, Allen (2001). Algebraic Topology. Cambridge University Press. ISBN 978-0-521-79160-1.