कोफिनलिटी: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
{{Distinguish| | {{Distinguish| | ||
सहसंबद्धता}} | सहसंबद्धता}} | ||
गणित में, विशेष रूप से [[आदेश सिद्धांत|क्रम सिद्धांत में,]] आंशिक रूप से आदेशित सेट A की सह-अंतिमता सीएफ (A'' '') A | गणित में, विशेष रूप से [[आदेश सिद्धांत|क्रम सिद्धांत में,]] आंशिक रूप से आदेशित सेट A की सह-अंतिमता सीएफ (A'' '') A के को-अंतिम उपसमुच्चय की कार्डिनैलिटी में [[प्रमुखता]] में सबसे कम है। | ||
कोफिनिटी की यह परिभाषा पसंद के स्वयंसिद्ध पर निर्भर करती है, क्योंकि यह इस तथ्य का उपयोग करती है कि [[बुनियादी संख्या]] | कोफिनिटी की यह परिभाषा पसंद के स्वयंसिद्ध पर निर्भर करती है, क्योंकि यह इस तथ्य का उपयोग करती है कि [[बुनियादी संख्या|बुनियादी संख्याओ]] के प्रत्येक गैर-खाली सेट में कम से कम सदस्य होता है। आंशिक रूप से ऑर्डर किए गए सेट A की सह-संबद्धता को वैकल्पिक रूप से कम से [[क्रमसूचक संख्या]] ''x'' के रूप में परिभाषित किया जा सकता है, जैसे कि कोफिनल इमेज (गणित) के साथ ''x'' 'तक एक फ़ंक्शन है।। यह दूसरी परिभाषा पसंद के स्वयंसिद्ध के बिना समझ में आती है। यदि पसंद के स्वयंसिद्ध को माना जाता है, जैसा कि इस लेख के बाकी हिस्सों में होगा, तो दो परिभाषाएँ समतुल्य हैं। | ||
कोफिनिटी को एक [[निर्देशित सेट]] के लिए समान रूप से परिभाषित किया जा सकता है और इसका उपयोग नेट (गणित) में एक बाद की धारणा को सामान्य करने के लिए किया जाता है। | कोफिनिटी को एक [[निर्देशित सेट]] के लिए समान रूप से परिभाषित किया जा सकता है और इसका उपयोग नेट (गणित) में एक बाद की धारणा को सामान्य करने के लिए किया जाता है। |
Revision as of 15:30, 17 February 2023
गणित में, विशेष रूप से क्रम सिद्धांत में, आंशिक रूप से आदेशित सेट A की सह-अंतिमता सीएफ (A ) A के को-अंतिम उपसमुच्चय की कार्डिनैलिटी में प्रमुखता में सबसे कम है।
कोफिनिटी की यह परिभाषा पसंद के स्वयंसिद्ध पर निर्भर करती है, क्योंकि यह इस तथ्य का उपयोग करती है कि बुनियादी संख्याओ के प्रत्येक गैर-खाली सेट में कम से कम सदस्य होता है। आंशिक रूप से ऑर्डर किए गए सेट A की सह-संबद्धता को वैकल्पिक रूप से कम से क्रमसूचक संख्या x के रूप में परिभाषित किया जा सकता है, जैसे कि कोफिनल इमेज (गणित) के साथ x 'तक एक फ़ंक्शन है।। यह दूसरी परिभाषा पसंद के स्वयंसिद्ध के बिना समझ में आती है। यदि पसंद के स्वयंसिद्ध को माना जाता है, जैसा कि इस लेख के बाकी हिस्सों में होगा, तो दो परिभाषाएँ समतुल्य हैं।
कोफिनिटी को एक निर्देशित सेट के लिए समान रूप से परिभाषित किया जा सकता है और इसका उपयोग नेट (गणित) में एक बाद की धारणा को सामान्य करने के लिए किया जाता है।
उदाहरण
- सबसे बड़े तत्व के साथ आंशिक रूप से ऑर्डर किए गए सेट की कोफ़िनिटी 1 है क्योंकि सेट केवल सबसे बड़ा तत्व है जो कोफिनल है (और हर दूसरे कोफिनल सबसेट में निहित होना चाहिए)।
- विशेष रूप से, किसी भी गैर -परिमित परिमित अध्यादेश की कोफ़िनिटी, या वास्तव में कोई भी परिमित निर्देशित सेट, 1 है, क्योंकि इस तरह के सेट का एक सबसे बड़ा तत्व है।
- आंशिक रूप से ऑर्डर किए गए सेट के प्रत्येक कोफ़िनल सबसेट में उस सेट के सभी अधिकतम तत्व होने चाहिए।इस प्रकार आंशिक रूप से ऑर्डर किए गए सेट की कोफ़िनिटी इसके अधिकतम तत्वों की संख्या के बराबर है।
- विशेष रूप से, चलो आकार का एक सेट हो और सबसेट के सेट पर विचार करें से अधिक नहीं है तत्व।यह आंशिक रूप से समावेश और सबसेट के साथ आदेश दिया गया है तत्व अधिकतम हैं।इस प्रकार इस पोज़िट की कोफ़िनिटी है द्विपद गुणांक
- प्राकृतिक संख्याओं का एक सबसेट में कोफिनल है यदि और केवल अगर यह अनंत है, और इसलिए की कोफ़िनिटी है इस प्रकार एक नियमित कार्डिनल है।
- उनके सामान्य आदेश के साथ वास्तविक संख्याओं की कोफ़िनिटी है तब से में कोफिनल है का सामान्य आदेश आइसोमॉर्फिक का आदेश नहीं है सातत्य की कार्डिनलिटी, जिसमें कॉफिनलिटी से अधिक से अधिक है यह दर्शाता है कि कोफिनिटी ऑर्डर पर निर्भर करता है;एक ही सेट पर अलग -अलग ऑर्डर में अलग -अलग कोफ़िनिटी हो सकती है।
गुण
अगर कुल ऑर्डर कोफ़िनल सबसेट स्वीकार करता है, फिर हम एक सबसेट पा सकते हैं यह अच्छी तरह से ऑर्डर किया गया है और कोफिनल है का कोई सबसेट भी अच्छी तरह से आदेश दिया गया है।के दो कोफ़िनल सबसेट न्यूनतम कार्डिनैलिटी के साथ (यानी, उनकी कार्डिनलिटी का कोफ़िनिटी है ) ऑर्डर आइसोमोर्फिक होने की आवश्यकता नहीं है (उदाहरण के लिए यदि फिर दोनों और के सबसेट के रूप में देखा गया की कोफ़िनिटी की गिनती योग्य कार्डिनलिटी है लेकिन ऑर्डर आइसोमोर्फिक नहीं हैं।) लेकिन कोफिनल सबसेट न्यूनतम आदेश प्रकार के साथ ऑर्डर आइसोमॉर्फिक होगा।
ऑर्डिनल्स और अन्य अच्छी तरह से आदेशित सेटों की कोफ़िनिटी
एक अध्यादेश की कोफ़िनिटी सबसे छोटा अध्यादेश है यह एक कोफिनल सबसेट का ऑर्डर प्रकार है ऑर्डिनल्स या किसी भी अन्य सुव्यवस्थित सेट के एक सेट की कोफ़िनिटी उस सेट के ऑर्डर प्रकार की कोफ़िनिटी है।
इस प्रकार एक सीमा के लिए वहाँ मौजूद है -इंडेक्स्ड सख्ती से सीमा के साथ बढ़ते अनुक्रम उदाहरण के लिए, की कोफ़िनिटी है क्योंकि अनुक्रम (कहाँ प्राकृतिक संख्याओं पर रेंज) की ओर जाता है लेकिन, अधिक आम तौर पर, किसी भी गणना योग्य सीमा के क्रम में कोफ़िनिटी होती है एक बेशुमार सीमा क्रम में या तो कोफ़िनिटी हो सकती है के रूप में करता है या एक बेशुमार कोफ़िनिटी।
0 का कोफ़िनिटी 0. है। किसी भी उत्तराधिकारी के क्रम में कोफ़िनिटी 1. है। किसी भी नॉनज़ेरो सीमा के क्रम में कोफ़िनिटी एक अनंत नियमित कार्डिनल है।
नियमित और एकवचन अध्यादेश
एक नियमित रूप से अध्यादेश एक अध्यादेश है जो इसकी कोफिनिटी के बराबर है।एक विलक्षण अध्यादेश कोई भी अध्यादेश है जो नियमित नहीं है।
प्रत्येक नियमित रूप से एक कार्डिनल का प्रारंभिक क्रम है।नियमित रूप से ऑर्डिनल्स की कोई भी सीमा प्रारंभिक ऑर्डिनल्स की एक सीमा है और इस प्रकार यह भी प्रारंभिक है लेकिन नियमित होने की आवश्यकता नहीं है।पसंद के स्वयंसिद्ध मानते हुए, प्रत्येक के लिए नियमित है इस मामले में, ऑर्डिनल्स और नियमित हैं, जबकि और प्रारंभिक ऑर्डिनल हैं जो नियमित नहीं हैं।
किसी भी अध्यादेश की कोफ़िनिटी एक नियमित रूप से अध्यादेश है, अर्थात्, कोफिनलिटी का कोफ़िनिटी की कोफ़िनिटी के समान है तो कोफिनिटी ऑपरेशन idempotent है।
कार्डिनल्स की कोफ़िनिटी
अगर एक अनंत कार्डिनल नंबर है, फिर कम से कम कार्डिनल ऐसा है कि एक बाउंडेड (सेट थ्योरी) फ़ंक्शन है को कड़ाई से छोटे कार्डिनल्स के सबसे छोटे सेट की कार्डिनलिटी भी है, जिसका योग है ज्यादा ठीक
इस तर्क को सामान्य करते हुए, कोई भी यह साबित कर सकता है कि एक सीमा के लिए
यह भी देखें
संदर्भ
- Jech, Thomas, 2003. Set Theory: The Third Millennium Edition, Revised and Expanded. Springer. ISBN 3-540-44085-2.
- Kunen, Kenneth, 1980. Set Theory: An Introduction to Independence Proofs. Elsevier. ISBN 0-444-86839-9.