अवशोषण (ध्वनिकी): Difference between revisions

From Vigyanwiki
No edit summary
 
Line 141: Line 141:
{{reflist}}
{{reflist}}


{{DEFAULTSORT:Absorption (Acoustics)}}[[Category: ध्वनि-विज्ञान]]
{{DEFAULTSORT:Absorption (Acoustics)}}  


{{Acoustics-stub}}
{{Acoustics-stub}}


 
[[Category:Acoustics stubs|Absorption (Acoustics)]]
 
[[Category:All stub articles|Absorption (Acoustics)]]
[[Category: Machine Translated Page]]
[[Category:Created On 16/02/2023|Absorption (Acoustics)]]
[[Category:Created On 16/02/2023]]
[[Category:Machine Translated Page|Absorption (Acoustics)]]
[[Category:Vigyan Ready]]
[[Category:Pages with script errors|Absorption (Acoustics)]]
[[Category:Templates Vigyan Ready]]
[[Category:ध्वनि-विज्ञान|Absorption (Acoustics)]]

Latest revision as of 10:05, 24 February 2023

ध्वनिक अवशोषण उस प्रक्रिया को संदर्भित करता है जिसके द्वारा ऊर्जा को प्रतिबिंबित (भौतिकी) करने के विपरीत ध्वनि तरंगों का सामना करते समय एक सामग्री, संरचना या वस्तु ध्वनि ऊर्जा लेती है। अवशोषित ऊर्जा का कुछ भाग ऊष्मा में परिवर्तित हो जाता है और कुछ भाग अवशोषित पिंड द्वारा संचरित हो जाता है। कहा जाता है कि ऊष्मा में परिवर्तित ऊर्जा 'लुप्त' हो गई है।[1]

जब ध्वनि विस्तारक से ध्वनि कमरे की दीवारों से टकराती है तो ध्वनि की ऊर्जा का कुछ भाग परावर्तित (भौतिकी) होता है, कुछ भाग संचरित होता है, और कुछ भाग दीवारों में अवशोषित हो जाता है। जिस तरह ध्वनिक ऊर्जा हवा के माध्यम से दबाव अंतर (या विकृतियों) के रूप में प्रेषित होती है, ध्वनिक ऊर्जा उस सामग्री के माध्यम से यात्रा करती है जो उसी तरह दीवार बनाती है। विरूपण ध्वनि ऊर्जा के हिस्से को गर्मी में परिवर्तित करके यांत्रिक नुकसान का कारण बनता है, जिसके परिणाम स्वरूप ध्वनिक क्षीणन होता है, ज्यादातर दीवार की श्यानता के कारण होता है। इसी तरह के क्षीणन प्रक्रीया हवा और किसी अन्य संचरण माध्यम के लिए लागू होते हैं जिसके माध्यम से ध्वनि यात्रा करती है।

अवशोषित ध्वनि का अंश दोनों माध्यमों के ध्वनिक प्रतिबाधाओं द्वारा नियंत्रित होता है और यह आवृत्ति और आपतन कोण का फलन है।[2] आकार और आकृति ध्वनि तरंग के व्यवहार को प्रभावित कर सकते हैं यदि वे इसकी तरंग दैर्ध्य के साथ परस्पर क्रिया करते हैं, जिससे तरंग घटनाएँ जैसे अप्रगामी तरंगें और विवर्तन उत्पन्न होती हैं।

ध्वनिरोधी अवशोषण ध्वनिरोधन में विशेष रुचि है। ध्वनिरोधन का उद्देश्य अधिक से अधिक ध्वनि ऊर्जा (अक्सर विशेष आवृत्तियों में) को अवशोषित करना है, इसे गर्मी में परिवर्तित करना या इसे एक निश्चित स्थान से दूर स्थानांतरित करना है।[3]

सामान्य तौर पर, नरम, लचीला, या झरझरा सामग्री (जैसे कपड़े) अच्छे ध्वनिक अवरोधक के रूप में काम करते हैं - अधिकांश ध्वनि को अवशोषित करते हैं, जबकि सघन, कठोर, अभेद्य सामग्री (जैसे धातु) सबसे अधिक प्रतिबिंबित करती हैं।

एक कमरा ध्वनि को कितनी अच्छी तरह अवशोषित करता है, यह दीवारों के प्रभावी अवशोषण क्षेत्र द्वारा निर्धारित किया जाता है, जिसे संपूर्ण अवशोषण क्षेत्र भी कहा जाता है। इसकी गणना इसके आयामों और दीवारों के क्षीणन गुणांक का उपयोग करके की जाती है।[4] संपूर्ण अवशोषण साबिन (इकाई) में व्यक्त किया गया है और उदाहरण के लिए, सभागार के प्रतिध्वनि # पुनर्संयोजन समय का निर्धारण करने में उपयोगी है। अवशोषण गुणांक को अनुरणन कक्ष का उपयोग करके मापा जा सकता है, जो अप्रतिध्वनिक कक्ष के विपरीत है (नीचे देखें)।

आम सामग्री के अवशोषण गुणांक

आम सामग्री के अवशोषण गुणांक[5]
सामग्री आवृत्ति (हर्ट्ज) द्वारा अवशोषण गुणांक
125 250 500 1,000 2,000
ध्वानिक टाइल (छत) .80 .90 .90 .95 .90
ईंटें .03 .03 .03 .04 .05
बजरी के ऊपर कारपेट .08 .25 .60 .70 .72
भारी पर्दे .15 .35 .55 .75 .70
मरमर .01 .01 .01 .01 .02
चित्रित बजरी .10 .05 .06 .07 .09
बजरी पर पलस्तर .10 .10 .08 .05 .05
कील पर परतदार लकड़ी .30 .20 .15 .10 .09
चिकनी बजरी .01 .01 .01 .02 .02
लकड़ी का फर्श .15 .11 .10 .07 .06


अनुप्रयोग

ध्वनिक अवशोषण कुछ क्षेत्रों में महत्वपूर्ण है जैसे कि:

अप्रतिध्वनिक कक्ष

ध्वनिक अप्रतिध्वनिक कक्ष एक कमरा है जिसे यथासंभव ध्वनि को अवशोषित करने के लिए प्रारुप किया गया है। दीवारों में अत्यधिक अवशोषक सामग्री के साथ कई बाधक होते हैं जो इस तरह से व्यवस्थित होते हैं कि ध्वनि का जो अंश वे प्रतिबिंबित करते हैं वह कमरे में वापस आने के बजाय दूसरे बाधक की ओर निर्देशित होता है। यह कक्ष को लगभग प्रतिध्वनि (घटना) से रहित बनाता है जो किसी स्रोत के ध्वनि दबाव स्तर को मापने और विभिन्न अन्य प्रयोगों और मापों के लिए उपयोगी होता है।

अप्रतिध्वनिक कक्ष कई कारणों से महंगे हैं और इसलिए आम नहीं हैं।

उन्हें बाहरी प्रभावों (जैसे, विमान, ट्रेन, ऑटोमोबाइल, स्नोमोबाइल्स, लिफ्ट, पंप, ...; वास्तव में ध्वनि का कोई भी स्रोत जो कक्ष के अंदर माप में हस्तक्षेप कर सकता है) से अलग होना चाहिए और वे शारीरिक रूप से बड़े होने चाहिए। पहला, पर्यावरणीय अलगाव, ज्यादातर मामलों में विशेष रूप से निर्मित, लगभग हमेशा बड़े पैमाने पर, और इसी तरह मोटी, दीवारों, फर्श और छत की आवश्यकता होती है। इस तरह के कक्ष अक्सर एक बड़ी इमारत के भीतर वसंत समर्थित पृथक कमरों के रूप में बनाए जाते हैं। कनाडा में नेशनल रिसर्च काउंसिल के पास एक आधुनिक अप्रतिध्वनिक कक्ष है, और वेब पर एक वीडियो नियुक्त किया है, जिसमें इन्हें और साथ ही अन्य निर्माण संबंधी विवरण को शामिल किया गया हैं। दरवाजे विशेष रूप से बनाए जाने चाहिए, उनके लिए परिबंधन ध्वनिक रूप से पूर्ण होनी चाहिए (किनारों के आसपास कोई रिसाव नहीं), वायु संचार (यदि कोई हो) सावधानीपूर्वक प्रबंधित किया जाना चाहिए, और मौन रहने के लिए चुना गया प्रकाश व्यवस्था मंद होनी चाहिए।

दूसरी आवश्यकता पहले भाग से और कमरे के अंदर कंपन को रोकने की आवश्यकता से होती है, मान लीजिए, एक ध्वनि स्रोत का परीक्षण किया जा रहा है। प्रतिध्वनियों को रोकना लगभग हमेशा दीवारों, फर्शों और छतों पर सोखने वाले फोम वेजेस के साथ किया जाता है, और यदि उन्हें कम आवृत्तियों पर प्रभावी होना है, तो ये शारीरिक रूप से बड़े होने चाहिए; जितना कम आवृत्तियों को अवशोषित किया जाना है, तो उन्हें उतना ही बड़ा होना चाहिए।

इसलिए उन अवशोषक और अलगाव योजनाओं को समायोजित करने के लिए अप्रतिध्वनिक कक्ष बड़ा हो, लेकिन फिर भी प्रायोगिक उपकरण और परीक्षण के तहत इकाइयों के लिए जगह की अनुमति दें।

विद्युत और यांत्रिक सादृश्य

माध्यम के भीतर ऊर्जा का अपव्यय ध्वनि के रूप में इसके माध्यम से यात्रा करता है, प्रतिरोधक में छितरी हुई ऊर्जा के अनुरूप होता है या यांत्रिक गति संचरण प्रणालियों के लिए डैशपॉट में छितराया जाता है। तीनों प्रतिरोधक और प्रतिक्रियाशील तत्वों की प्रणाली के प्रतिरोधक भाग के बराबर हैं। प्रतिरोधी तत्व ऊर्जा (गर्मी में अपरिवर्तनीय रूप से) को नष्ट कर देते हैं और प्रतिक्रियाशील तत्व ऊर्जा को संग्रह और अवमुक्त करते हैं (विपरीत रूप से, कम नुकसान की उपेक्षा)। ध्वनिक माध्यम के प्रतिक्रियाशील भागों को इसके आयतन मापांक और इसके घनत्व द्वारा निर्धारित किया जाता है, क्रमशः संधारित्र और प्रारंभ करनेवाला के अनुरूप, और द्रव्यमान से जुड़े वसंत (उपकरण) के अनुरूप होता है।

ध्यान दें कि चूंकि अपव्यय केवल प्रतिरोधी तत्व पर निर्भर करता है, यह आवृत्ति से स्वतंत्र है। हालांकि व्यवहार में प्रतिरोधक तत्व आवृत्ति के साथ बदलता रहता है। उदाहरण के लिए, अधिकांश सामग्रियों के कंपन उनकी भौतिक संरचना को बदलते हैं और इसलिए उनके भौतिक गुणों को बदलते हैं; परिणाम 'प्रतिरोध' तुल्यता में परिवर्तन है। इसके अतिरिक्त, संपीड़न (भौतिक) और विरलता का चक्र अधिकांश सामग्रियों में दबाव तरंगों के शैथिल्य को प्रदर्शित करता है जो आवृत्ति का एक फलन है, इसलिए प्रत्येक संपीड़न के लिए एक विरलता होती है, और शैथिल्य के कारण होने वाली ऊर्जा की कुल मात्रा आवृत्ति के साथ बदल जाती है। इसके अलावा, कुछ सामग्रियां गैर-न्यूटोनियन तरीके से व्यवहार करती हैं, जिससे उनकी श्यानता संपीड़न और विरलन के दौरान अनुभव किए गए अपरूपण विकृति के दर के साथ बदल जाती है; फिर, यह आवृत्ति के साथ बदलता रहता है। गैस और तरल पदार्थ आम तौर पर ठोस पदार्थों की तुलना में कम शैथिल्य प्रदर्शित करते हैं (जैसे, ध्वनि तरंगें रूद्धोष्म संपीड़न और विरलता का कारण बनती हैं) और ज्यादातर न्यूटोनियन तरीके से व्यवहार करती हैं।

संयुक्त, ध्वनिक माध्यम के प्रतिरोधी और प्रतिक्रियाशील गुण ध्वनिक प्रतिबाधा बनाते हैं। अलग माध्यम से मिलने वाली ध्वनि तरंगों का व्यवहार भिन्न ध्वनिक प्रतिबाधाओं द्वारा निर्धारित होता है। विद्युत प्रतिबाधाओं के साथ, प्रतिबाधा मिलान और बेमेल हैं और कुछ आवृत्तियों (लगभग 100% तक) के लिए ऊर्जा स्थानांतरित की जाएगी, जबकि अन्य के लिए यह अधिकतर प्रतिबिंबित हो सकती है (फिर से, बहुत बड़े प्रतिशत तक)।

प्रवर्धक और ध्वनि विस्तारक प्रारुप में प्रणाली के विद्युत प्रतिबाधा, यांत्रिक प्रतिबाधा और ध्वनिक प्रतिबाधा को इस तरह संतुलित किया जाना चाहिए कि आवृत्ति और चरण प्रतिक्रिया कम से कम पुनरुत्पादित ध्वनि को बहुत व्यापक वर्णक्रम में बदल दे, जबकि अभी भी श्रोता के लिए पर्याप्त ध्वनि स्तर का उत्पादन कर रहा है। इलेक्ट्रॉनिक परिपथ में लंबे समय तक उपयोग की जाने वाली समान (या समान) तकनीकों का उपयोग करके प्रतिरूपण ध्वनिक प्रणालियों ने ध्वनिक डिजाइनरों को एक नया और शक्तिशाली प्रारुप साधन दिया।

यह भी देखें

  • ध्वनिरोधन
  • ध्वनिक क्षीणन
  • क्षीणन गुणांक
  • अप्रतिध्वनिक कक्ष
  • ध्वनिक तरंग
  • ध्वनिक प्रतिबाधा

संदर्भ

  1. Acoustic Absorbers and Diffusers: Theory, Design and Applicatio.CRC Press .2009.Peter D'Antoni
  2. "Refraction of Sound". Archived from the original on 2013-03-18. Retrieved 2013-02-20.
  3. "Acoustics absorption and sound insulation". zoomito.
  4. "Sound Absorption Coefficient".
  5. Parker, Barry (15 December 2009). Good vibrations : the physics of music. Johns Hopkins University Press. p. 248. ISBN 9780801897078. Retrieved 4 January 2019.