संबंध बीजगणित: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{for|the concept related to databases|Relational algebra}}
{{for|डेटाबेस से संबंधित अवधारणा|संबंध बीजगणित}}
गणित और [[सार बीजगणित]] में, संबंध बीजगणित अवक्षेपण (गणित) के साथ [[अवशिष्ट बूलियन बीजगणित]] घटाव होता है जिसे बातचीत कहा जाता है, यूनरी ऑपरेशन। संबंध बीजगणित का प्रेरक उदाहरण बीजगणित 2 है<sup></sup> सेट X पर सभी [[द्विआधारी संबंध]]ों का, अर्थात, [[कार्तीय वर्ग]] X के सबसेट<sup>2</sup>, R•S के साथ संबंध R और S की सामान्य संरचना के रूप में व्याख्या की गई है, और R के विलोम को विलोम संबंध के रूप में।
गणित और [[सार बीजगणित]] में, एक संबंध बीजगणित अवक्षेपण (गणित) के साथ [[अवशिष्ट बूलियन बीजगणित]] घटाव होता है जिसे कॉनवर्स, एक यूनरी ऑपरेशन कहा जाता है। किसी संबंध बीजगणित के प्रेरक उदाहरण को X समुच्चय पर सभी [[द्विआधारी संबंधों]] में 2<sup>''X''²</sup> बीजगणित कहते हैं, अर्थात [[कार्तीय वर्ग]] ''X''<sup>2</sup> के उपसमुच्चय, जिसमें R•S के साथ संबंध R और S की सामान्य संरचना के रूप में व्याख्यायित किया जाता है तथा R को अन्योन्य संबंध कहा जाता है।


[[ऑगस्टस डी मॉर्गन]] और [[चार्ल्स सैंडर्स पियर्स]] के 19वीं शताब्दी के काम में संबंध बीजगणित उभरा, जो अर्नस्ट श्रोडर (गणितज्ञ) के [[बीजगणितीय तर्क]] में समाप्त हुआ। अर्न्स्ट श्रोडर। 1940 के दशक में शुरू होने वाले संबंध बीजगणित के समतुल्य रूप को [[अल्फ्रेड टार्स्की]] और उनके छात्रों द्वारा विकसित किया गया था। तर्स्की और गिवंत (1987) ने संबंध बीजगणित को [[स्वयंसिद्ध सेट सिद्धांत]] के चर-मुक्त उपचार के लिए लागू किया, इस निहितार्थ के साथ कि सेट सिद्धांत पर स्थापित गणित स्वयं चर के बिना आयोजित किया जा सकता है।
संबंध बीजगणित [[ऑगस्टस डी मॉर्गन]] और [[चार्ल्स सैंडर्स पियर्स]] के 19 वीं शताब्दी के काम में उभरा, जिसका समापन अर्नस्ट श्रोडर(गणितज्ञ) के [[बीजगणितीय तर्क]] में समाप्त हुआ था। 1940 के दशक में शुरू होने वाले संबंध बीजगणित के समतुल्य रूप को [[अल्फ्रेड टार्स्की]] और उनके छात्रों द्वारा विकसित किया गया था। तर्स्की और गिवंत (1987) ने संबंध बीजगणित को [[स्वयंसिद्ध सेट सिद्धांत|स्वयंसिद्ध समुच्चय सिद्धांत]] के चर-मुक्त उपचार के लिए लागू किया, इस निहितार्थ के साथ कि समुच्चय सिद्धांत पर स्थापित गणित स्वयं चर के बिना आयोजित किया जा सकता है।


== परिभाषा ==
== परिभाषा ==
एक संबंध बीजगणित {{math|1=(''L'', ∧, ∨, <sup>&minus;</sup>, 0, 1, •, '''I''', ˘)}} संयोजन x∧y, संयोजन x∨y, और निषेध x के बूलियन बीजगणित के परिचय से सुसज्जित [[बीजगणितीय संरचना]] है<sup>−</sup>, बूलियन स्थिरांक 0 और 1, संबंधों x•y और विलोम संबंध x˘, और संबंधपरक स्थिरांक की संरचना की संबंधपरक संक्रियाएं {{math|1='''I'''}}, जैसे कि ये संक्रियाएँ और स्थिरांक कुछ समीकरणों को संतुष्ट करते हैं जो बीजगणितीय तर्क #संबंधों की कलन का स्वसिद्धीकरण करते हैं। मोटे तौर पर, संबंध बीजगणित सेट पर द्विआधारी संबंधों की प्रणाली है जिसमें [[खाली संबंध]] (0), [[सार्वभौमिक संबंध]] (1), और [[पहचान संबंध]] शामिल हैं। {{math|1=('''I''')}} [[समूह (गणित)]] के रूप में इन पांच परिचालनों के तहत संबंध और बंद सेट के क्रम[[परिवर्तन]] की प्रणाली है जिसमें पहचान क्रमपरिवर्तन होता है और रचना और व्युत्क्रम के तहत बंद होता है। हालाँकि, संबंध बीजगणित का प्रथम-क्रम तर्क [[सिद्धांत (तर्क)]] द्विआधारी संबंधों की ऐसी प्रणालियों के लिए [[पूर्णता (तर्क)]] नहीं है।
एक संबंध बीजगणित {{math|1=(''L'', ∧, ∨, <sup>&minus;</sup>, 0, 1, •, '''I''', ˘)}} [[बीजगणितीय संरचना]] है जो संयोजन X∧y, वियोजन X∨y, और निषेध X के बूलियन संचालन से लैस है, बूलियन स्थिरांक 0 और 1, रचना X • y और इसका विपरीत X˘ के संबंधपरक संचालन, और संबंधपरक स्थिरांक {{math|1='''I'''}}, जैसे कि ये संचालन और स्थिरांक कुछ समीकरणों को संतुष्ट करते हैं, जो संबंधों के एक पथरी के स्वयंसिद्धता का निर्माण करते हैं। मोटे तौर पर, संबंध बीजगणित समुच्चय पर द्विआधारी संबंधों की प्रणाली है जिसमें [[खाली संबंध]] (0), [[सार्वभौमिक संबंध]] (1), और [[पहचान संबंध]] शामिल हैं। {{math|1=('''I''')}} [[समूह (गणित)]] के रूप में इन पांच परिचालनों के तहत संबंध और बंद समुच्चय के क्रम[[परिवर्तन]] की प्रणाली है जिसमें पहचान क्रमपरिवर्तन होता है और रचना और व्युत्क्रम के तहत बंद होता है। हालाँकि, संबंध बीजगणित का प्रथम-क्रम तर्क [[सिद्धांत (तर्क)]] द्विआधारी संबंधों की ऐसी प्रणालियों के लिए [[पूर्णता (तर्क)]] नहीं है।


Jónsson और Tsinakis (1993) के अनुसार अतिरिक्त संक्रियाओं x◁y = x•y˘, और, दोहरे रूप से, x▷y = x˘•y को परिभाषित करना सुविधाजनक है। जॉनसन और सिनाकिस ने दिखाया {{math|1='''I'''◁''x'' = ''x''▷'''I'''}}, और दोनों x˘ के बराबर थे। इसलिए संबंध बीजगणित को बीजगणितीय संरचना के रूप में समान रूप से परिभाषित किया जा सकता है {{math|1=(''L'', ∧, ∨, <sup>&minus;</sup>, 0, 1, •, '''I''', ◁, ▷)}}. सामान्य हस्ताक्षर की तुलना में इस [[हस्ताक्षर (तर्क)]] का लाभ यह है कि संबंध बीजगणित को पूर्ण रूप से केवल अवशिष्ट बूलियन बीजगणित के रूप में परिभाषित किया जा सकता है जिसके लिए {{math|1='''I'''◁''x''}} इनवॉल्वमेंट है, यानी {{math|1='''I'''◁('''I'''◁''x'') = ''x''}} . बाद की स्थिति को सामान्य अंकगणित गुणक व्युत्क्रम के लिए समीकरण 1/(1/x) = x के संबंधपरक समकक्ष के रूप में माना जा सकता है, और कुछ लेखक व्युत्क्रम को व्युत्क्रम के पर्याय के रूप में उपयोग करते हैं।
जॉनसन और सिनाकिस (1993) के अनुसार अतिरिक्त संक्रियाओं x◁y = x•y˘, और, दोहरे रूप से, x▷y = x˘•y को परिभाषित करना सुविधाजनक है। जॉनसन और सिनाकिस ने दिखाया कि {{math|1='''I'''◁''x'' = ''x''▷'''I'''}}, और यह कि दोनों x˘ के बराबर थे। इसलिए एक संबंध बीजगणित को समान रूप से एक बीजगणितीय संरचना {{math|1=(''L'', ∧, ∨, <sup>&minus;</sup>, 0, 1, •, '''I''', ◁, ▷)}} के रूप में परिभाषित किया जा सकता है। सामान्य हस्ताक्षर पर इस [[हस्ताक्षर (तर्क)]] का लाभ यह है कि जिसके लिए {{math|1='''I'''◁''x''}} एक अंतर्वलन है, अर्थात, {{math|1='''I'''◁('''I'''◁''x'') = ''x''}} का एक संबंध बीजगणित को पूर्ण रूप से एक अवशिष्ट बूलियन बीजगणित के रूप में परिभाषित किया जा सकता है। बाद की स्थिति को साधारण अंकगणितीय पारस्परिक के लिए समीकरण 1/(1/x) = x के संबंधपरक प्रतिरूप के रूप में माना जा सकता है, और कुछ लेखक व्युत्क्रम को बातचीत के पर्याय के रूप में उपयोग करते हैं।


चूंकि अवशिष्ट बूलियन बीजगणित परिमित रूप से अनेक सर्वसमिकाओं के साथ अभिगृहीत होते हैं, इसलिए संबंध बीजगणित होते हैं। इसलिए उत्तरार्द्ध [[विविधता (सार्वभौमिक बीजगणित)]] का निर्माण करता है, संबंध बीजगणित की विविधता 'आरए'। उपर्युक्त परिभाषा को समीकरणों के रूप में विस्तारित करने से निम्नलिखित परिमित स्वयंसिद्धता प्राप्त होती है।
चूंकि अवशिष्ट बूलियन बीजगणित परिमित रूप से अनेक सर्वसमिकाओं के साथ अभिगृहीत होते हैं, इसलिए संबंध बीजगणित होते हैं। आरऐ उत्तरार्द्ध [[विविधता (सार्वभौमिक बीजगणित)]] के विभिन्न प्रकारों का समुच्चय बनाता है। उपर्युक्त परिभाषा को समीकरणों के रूप में विस्तारित करने से निम्नलिखित परिमित स्वयंसिद्धता प्राप्त होती है।


=== अभिगृहीत ===
=== अभिगृहीत ===
नीचे दिए गए अभिगृहीत B1-B10 Givant (2006: 283) से अनुकूलित किए गए हैं, और पहली बार 1948 में अल्फ्रेड टार्स्की द्वारा निर्धारित किए गए थे।<ref>[[Alfred Tarski]] (1948) "Abstract: Representation Problems for Relation Algebras," ''Bulletin of the AMS'' 54: 80.</ref>
नीचे दिए गए अभिगृहीत B1-B10 जीवांत (2006: 283) से अनुकूलित हैं, और पहली बार 1948 में टार्स्की द्वारा निर्धारित किए गए थे।<ref>[[Alfred Tarski]] (1948) "Abstract: Representation Problems for Relation Algebras," ''Bulletin of the AMS'' 54: 80.</ref>
एल [[बूलियन बीजगणित (संरचना)]] है जो बाइनरी [[अलगाव]], ∨, और यूनरी कॉम्प्लीमेंट (ऑर्डर थ्योरी) () के तहत है।<sup>−</sup>:
: बी 1: ''ए'' ∨ ''बी'' = ''बी'' ∨ ''ए''
: बी 2: ''ए'' ∨ (''बी'' ∨ ''सी'') = (''ए'' ∨ ''बी'') ∨ ''सी''
:B3: (''ए''<sup>−</sup> ∨ बी)<sup>−</sup> ∨ (ए<sup>−</sup> ∨ बी<sup>−</sup>)<sup>−</sup> = ए
बूलियन बीजगणित का यह स्वसिद्धीकरण [[एडवर्ड वर्मिली हंटिंगटन]] (1933) के कारण है। ध्यान दें कि निहित बूलियन बीजगणित का मीट • ऑपरेटर नहीं है (भले ही यह ∨ पर वितरित करता है जैसे कि मीट करता है), और न ही बूलियन बीजगणित का 1 है {{math|1='''I'''}} नियत।


एल संबंधों की द्विआधारी संरचना (•) और [[अशक्त]] पहचान के तहत [[मोनोइड]] है {{math|1='''I'''}}:
''L'' बाइनरी [[अलगाव]] के तहत एक[[बूलियन बीजगणित (संरचना)]] है, ∨, और एकात्मक पूरकता ()<sup>-</sup>:
:B4: ''A''(''B''''C'') = (''A''''B'')''C''
:: '''B1''': ''A'' ∨ ''B'' = ''B'' ∨ ''A''
:B5: ''A''•I = ''A''
:: '''B2''': ''A'' (''B'' ''C'') = (''A'' ''B'') ''C''
:: '''B3''': (''A''<sup>−</sup> ∨ ''B'')<sup>−</sup> ∨ (''A''<sup>−</sup> ∨ ''B''<sup>−</sup>)<sup>−</sup> = ''A''
बूलियन बीजगणित का यह स्वसिद्धीकरण [[एडवर्ड वर्मिली हंटिंगटन]] (1933) के कारण है। ध्यान दें कि निहित बूलियन बीजगणित का मिलन • ऑपरेटर नहीं है, (भले ही यह ∨ पर वितरित करता है जैसे एक मिलन करता है) न ही बूलियन बीजगणित का 1 {{math|1='''I'''}} स्थिरांक है।


यूनरी कनवर्स रिलेशन ()˘ इनवोल्यूशन के साथ सेमीग्रुप है:
''L'' द्विआधारी संरचना () और [[अशक्त]] पहचान {{math|1='''I'''}} के तहत एक [[मोनोइड]] है:
:B6: ''A''˘˘ = ''A''
:: '''B4''': ''A''•(''B''•''C'') = (''A''•''B'')•''C''
:B7: (''''''बी'')˘ = ''बी''˘•''''˘
:: '''B5''': ''A'''''I''' = ''A''


Axiom B6 रूपांतरण को समावेशन (गणित) के रूप में परिभाषित करता है, जबकि B7 रचना के सापेक्ष रूपांतरण के प्रतिपक्षी गुण को व्यक्त करता है।<ref name="BrinkKahl1997">{{cite book|author1=Chris Brink|author2=Wolfram Kahl|author3=Gunther Schmidt|title=Relational Methods in Computer Science|date=1997|publisher=Springer|isbn=978-3-211-82971-4|pages=4 and 8}}</ref>
यूनरी कन्वर्स ()˘ रचना के संबंध में एक अंतर्वलन है:
वियोजन पर विलोम और संघटन वितरण नियम:
:: '''B6''': ''A''˘˘ = ''A''
:B8: (''A''''B'')˘ = ''A''˘∨''B''˘
:: '''B7''': (''A''•''B'')˘ = ''B''˘•''A''˘
:B9: (''A''''B'')•''C'' = (''A''•''C'')∨(''B''''C'')


B10 ऑगस्टस डी मॉर्गन द्वारा खोजे गए तथ्य का टार्स्की का समीकरण रूप है, कि ''A''''B'' ''C''<sup>-</सुप>  {{eqv}} ए˘ • सी ≤ बी<sup>-</सुप>  {{eqv}} सी • बी˘ ≤ ए<sup>-</सुप>.
अभिगृहीत '''B6''' रूपांतरण को एक समावेशन(गणित) के रूप में परिभाषित करता है, जबकि '''B7''' रचना के सापेक्ष रूपांतरण के प्रतिपक्षी गुण को व्यक्त करता है।<ref name="BrinkKahl1997">{{cite book|author1=Chris Brink|author2=Wolfram Kahl|author3=Gunther Schmidt|title=Relational Methods in Computer Science|date=1997|publisher=Springer|isbn=978-3-211-82971-4|pages=4 and 8}}</ref>  
:B10: (''ए''˘•(''ए''•''बी'')<sup>−</sup>)∨बी<sup>−</sup> = बी<sup>-</सुप>


ये अभिगृहीत [[ZFC]] प्रमेय हैं; विशुद्ध रूप से बूलियन बी1-बी3 के लिए, यह तथ्य तुच्छ है। निम्नलिखित में से प्रत्येक स्वयंसिद्ध के बाद सपेस (1960) के अध्याय 3 में संबंधित प्रमेय की संख्या दिखाई गई है, ZFC की प्रदर्शनी: B4 27, B5 45, B6 14, B7 26, B8 16, B9 23।
संयोजन पर बातचीत और संरचना वितरण:
:: '''B8''': (''A''∨''B'')˘ = ''A''˘∨''B''˘
:: '''B9''': (''A''∨''B'')•''C'' = (''A''•''C'')∨(''B''•''C'')


== आरए == में द्विआधारी संबंधों के गुण व्यक्त करना
'''B10''' ऑगस्टस डी मॉर्गन द्वारा खोजे गए तथ्य का टार्स्की का समीकरण रूप है ''A''•''B'' ≤ ''C''<sup>−</sup> ↔ ''A''˘•''C'' ≤ ''B''<sup>−</sup> ↔ ''C''•''B''˘ ≤ ''A''<sup>−</sup>
:'''B10''': (''A''˘•(''A''•''B'')<sup>−</sup>)∨''B''<sup>−</sup> = ''B''<sup>−</sup>
 
ये अभिगृहीत [[ज़ैडएफसी]] प्रमेय हैं; विशुद्ध रूप से बूलियन बी1-बी3 के लिए, यह तथ्य तुच्छ है। निम्नलिखित में से प्रत्येक स्वयंसिद्ध के बाद सपेस (1960) के अध्याय 3 में संबंधित प्रमेय की संख्या दिखाई गई है, ज़ैडएफसी की एक प्रदर्शनी: '''B4''' 27, '''B5''' 45, '''B6''' 14, '''B7''' 26, '''B8''' 16, '''B9''' 23 है।
 
== आरए में द्विआधारी संबंधों के गुण व्यक्त करना ==
निम्न तालिका दर्शाती है कि द्विआधारी संबंधों के कितने सामान्य गुणों को संक्षिप्त आरए समानता या असमानता के रूप में व्यक्त किया जा सकता है। नीचे, ''A'' ≤ ''B'' फ़ॉर्म की असमानता बूलियन समीकरण के लिए शॉर्टहैंड है {{math|1=''A''∨''B'' = ''B''}}.
निम्न तालिका दर्शाती है कि द्विआधारी संबंधों के कितने सामान्य गुणों को संक्षिप्त आरए समानता या असमानता के रूप में व्यक्त किया जा सकता है। नीचे, ''A'' ≤ ''B'' फ़ॉर्म की असमानता बूलियन समीकरण के लिए शॉर्टहैंड है {{math|1=''A''∨''B'' = ''B''}}.


इस प्रकृति के परिणामों का सबसे पूर्ण सेट कार्नाप (1958) का अध्याय सी है, जहां संकेतन इस प्रविष्टि से काफी दूर है। सपेस (1960) के अध्याय 3.2 में कम परिणाम शामिल हैं, जो ZFC प्रमेय के रूप में प्रस्तुत किए गए हैं और नोटेशन का उपयोग कर रहे हैं जो इस प्रविष्टि के समान है। न तो कार्नैप और न ही सपेस ने इस प्रविष्टि के आरए का उपयोग करके या समान तरीके से अपने परिणाम तैयार किए।
इस प्रकृति के परिणामों का सबसे पूर्ण सेट कार्नाप (1958) का अध्याय C है, जहां संकेतन इस प्रविष्टि से काफी दूर है। सपेस (1960) के अध्याय 3.2 में कम परिणाम शामिल हैं, जो ZFC प्रमेय के रूप में प्रस्तुत किए गए हैं और एक नोटेशन का उपयोग कर रहे हैं जो इस प्रविष्टि के समान है। इस प्रविष्टि के '''RA''' का उपयोग करके या एक समान तरीके से न तो कार्नैप और न ही सपेस ने अपने परिणाम तैयार किए थे।
{| class=wikitable
{| class="wikitable"
|-
|-
!''R'' is!![[If and only if]]:
!''R'' is!![[If and only if]]:
Line 47: Line 49:
|- style="border-top:1px solid #999;"
|- style="border-top:1px solid #999;"
|-
|-
|[[Functional relation|Functional]]|| {{math|1=''R''˘•''R'' ≤ '''I'''}}   
|[[Functional relation|प्रकायाणत्मक]]|| {{math|1=''R''˘•''R'' ≤ '''I'''}}   
|-
|-
|[[Binary relation#Special types of binary relations|Left-total]]|| {{math|1='''I''' ≤ ''R''•''R''˘}} (''R''˘ is surjective)
|[[Binary relation#Special types of binary relations|वाचिक-योग]]|| {{math|1='''I''' ≤ ''R''•''R''˘}} (''R''˘ कर्तृपदीय है)
|-
|-
|[[Function (mathematics)|Function]]|| functional and left-total.
|[[Function (mathematics)|फलन]]|| प्रकायाणत्मक और वाचिक-योग
|-
|-
|[[Injective]]<br>|| {{math|1= ''R''•''R''˘ ≤ '''I'''}} (''R''˘ is functional)  
|[[एकैकी]]|| {{math|1= ''R''•''R''˘ ≤ '''I'''}} (''R''˘ प्रकायाणत्मक है)  
|-
|-
|[[Surjective]]|| {{math|1= '''I''' ≤ ''R''˘•''R''}} (''R''˘ is left-total)
|[[Surjective|कर्तृपदीय]]|| {{math|1= '''I''' ≤ ''R''˘•''R''}} (R˘ वाचिक-योग है)
|-
|-
|[[Bijection]]|| {{math|1= ''R''˘•''R'' = ''R''•''R''˘ = '''I'''}} (Injective surjective function)
|[[Bijection|द्विभाजित]]|| {{math|1= ''R''˘•''R'' = ''R''•''R''˘ = '''I'''}} (एकैकी कर्तृपदीय फलन)
|-
|-
|[[Transitive relation|Transitive]]|| {{math|1=''R''•''R'' ≤ ''R''}}
|[[Transitive relation|संक्रामी]]|| {{math|1=''R''•''R'' ≤ ''R''}}
|-
|-
|[[Reflexive relation|Reflexive]]|| {{math|1='''I''' ≤ ''R''}}
|[[Reflexive relation|स्वतुल्य]]|| {{math|1='''I''' ≤ ''R''}}
|-
|-
|[[Coreflexive relation|Coreflexive]]|| {{math|1=''R'' ≤ '''I'''}}
|[[Coreflexive relation|सहस्वतुल्य]]|| {{math|1=''R'' ≤ '''I'''}}
|-
|-
|[[Irreflexive relation|Irreflexive]]|| {{math|1=''R'' &and; '''I''' = 0}}
|[[Irreflexive relation|अपरावर्ती]]|| {{math|1=''R'' &and; '''I''' = 0}}
|-
|-
|[[Symmetric relation|Symmetric]]|| {{math|1=''R''˘ = ''R''}}
|[[Symmetric relation|सममिति]]|| {{math|1=''R''˘ = ''R''}}
|-
|-
|[[Antisymmetric relation|Antisymmetric]]|| {{math|1=''R'' &and; ''R''˘ ≤ '''I'''}}
|[[Antisymmetric relation|प्रतिसममित]]|| {{math|1=''R'' &and; ''R''˘ ≤ '''I'''}}
|-
|-
|[[Asymmetric relation|Asymmetric]]|| {{math|1=''R'' &and; ''R''˘ = 0}}
|[[Asymmetric relation|असममिति]]|| {{math|1=''R'' &and; ''R''˘ = 0}}
|-
|-
|[[Connected relation|Strongly connected]]|| {{math|1= ''R'' ∨ ''R''˘ = 1 }}
|[[Connected relation|दृढ़ संबद्ध]]|| {{math|1= ''R'' ∨ ''R''˘ = 1 }}
|-
|-
|[[Connected relation|Connected]]|| {{math|1= '''I''' ∨ ''R'' ∨ ''R''˘ = 1 }}
|[[Connected relation|संबद्ध]]|| {{math|1= '''I''' ∨ ''R'' ∨ ''R''˘ = 1 }}
|-
|-
|[[Idempotent relation|Idempotent]]|| {{math|1=''R''•''R'' = ''R'' }}
|[[Idempotent relation|इडैम्पोटेन्ट]]|| {{math|1=''R''•''R'' = ''R'' }}
|-
|-
|[[Preorder]]|| ''R'' is transitive and reflexive.
|[[Preorder|पूर्व आदेश]]|| R सकर्मक और स्वतुल्य है।
|-
|-
|[[Equivalence relation|Equivalence]]||''R'' is a symmetric preorder.
|[[Equivalence relation|समतुल्यता]]||R सममित प्रीऑर्डर है।
|-
|-
|[[Partial order]]|| ''R'' is an antisymmetric preorder.
|[[Partial order|आंशिक क्रम]]|| R एंटीसिमेट्रिक प्रीऑर्डर है।
|-
|-
|[[Total order]]|| ''R'' is strongly connected and a partial order.
|[[Total order|कुल]] [[Partial order|क्रम]]|| R दृढ़ता से जुड़ा हुआ है और आंशिक क्रम है।
|-
|-
|[[Strict partial order]]||''R'' is transitive and irreflexive.
|[[Strict partial order|पूर्णतः]] [[Partial order|आंशिक क्रम]]||R सकर्मक और अकाट्य है।
|-
|-
|[[Total order|Strict total order]]|| ''R'' is connected and a strict partial order.
|[[Total order|पूर्णतः]] [[Total order|कुल]] [[Partial order|क्रम]]|| R जुड़ा हुआ है और सख्त आंशिक क्रम है।
|-
|-
|[[Dense order|Dense]]|| {{math|1=''R'' &and; '''I'''<sup>−</sup> ≤ (''R'' &and; '''I'''<sup>−</sup>)•(''R'' &and; '''I'''<sup>−</sup>)}}.
|[[Dense order|सघन]]|| {{math|1=''R'' &and; '''I'''<sup>−</sup> ≤ (''R'' &and; '''I'''<sup>−</sup>)•(''R'' &and; '''I'''<sup>−</sup>)}}.
|}
|}




== अभिव्यंजक शक्ति ==
== अभिव्यंजक घात ==
आरए के [[मेटामैथमैटिक्स]] पर तार्स्की और गिवंत (1987) में विस्तार से चर्चा की गई है, और गिवंत (2006) में अधिक संक्षेप में।
गिवंत (2006) के अधिक संक्षेप में '''RA''' के [[मेटामैथमैटिक्स]] पर तार्स्की और गिवंत (1987) में विस्तार से चर्चा की गई है।


आरए में पूरी तरह से समान प्रतिस्थापन और समान के लिए समान के प्रतिस्थापन से अधिक कुछ नहीं का उपयोग करके हेरफेर किए गए समीकरण शामिल हैं। दोनों नियम स्कूली गणित और अमूर्त बीजगणित से पूरी तरह परिचित हैं। इसलिए आरए प्रमाणों को सभी गणितज्ञों से परिचित तरीके से किया जाता है, आम तौर पर [[गणितीय तर्क]] के मामले के विपरीत।
आरए में पूरी तरह से समान प्रतिस्थापन और समान के लिए समान के प्रतिस्थापन से अधिक कुछ नहीं का उपयोग करके हेरफेर किए गए समीकरण शामिल हैं। दोनों नियम स्कूली गणित और अमूर्त बीजगणित से पूरी तरह परिचित हैं। इसलिए आरए प्रमाणों को सभी गणितज्ञों से परिचित तरीके से किया जाता है, आम तौर पर [[गणितीय तर्क]] के मामले के विपरीत।


आरए किसी भी (और तार्किक तुल्यता तक, बिल्कुल) प्रथम-क्रम तर्क (FOL) सूत्रों को व्यक्त कर सकता है जिसमें तीन से अधिक चर नहीं होते हैं। (एक दिए गए चर को कई बार परिमाणित किया जा सकता है और इसलिए चर का पुन: उपयोग करके परिमाणकों को मनमाने ढंग से गहराई से नेस्ट किया जा सकता है।){{citation needed|reason=See section 'Quantifier nesting' on talk page. Moreover, the treatment of ternary, etc., relations should be made clear.|date=March 2019}} हैरानी की बात है कि एफओएल का यह टुकड़ा [[पियानो अंकगणित]] और लगभग सभी स्वयंसिद्ध सेट सिद्धांत को व्यक्त करने के लिए पर्याप्त है। इसलिए, आरए वास्तव में लगभग सभी गणित को बीजगणित करने का तरीका है, जबकि एफओएल और इसके [[तार्किक संयोजक]], [[परिमाणक (तर्क)]]तर्क) एस, [[घूमने वाला दरवाज़ा (प्रतीक)]]प्रतीक), और [[मूड सेट करना]] के साथ वितरण करता है। क्योंकि आरए पीनो अंकगणित और सेट सिद्धांत को व्यक्त कर सकता है, गोडेल की अपूर्णता प्रमेय इस पर लागू होती है; आरए गोडेल की अपूर्णता प्रमेय, अपूर्ण और [[अनिर्णीत समस्या]] है।{{Citation needed|date=April 2012}} (N.B. RA का बूलियन बीजगणित अंश पूर्ण और निर्णायक है।)
'''RA''' में पूरी तरह से समान प्रतिस्थापन और समान के लिए समान के प्रतिस्थापन से अधिक कुछ नहीं का उपयोग करके हेरफेर किए गए समीकरण शामिल हैं। दोनों नियम स्कूली गणित और अमूर्त बीजगणित से पूरी तरह परिचित हैं, इसलिए आम तौर पर [[गणितीय तर्क]] के मामले के विपरीत '''RA''' प्रमाणों को सभी गणितज्ञों से परिचित तरीके से किया जाता है।
 
'''RA''' किसी भी (और तार्किक तुल्यता तक, बिल्कुल) प्रथम-क्रम तर्क (एफओएल) सूत्रों को व्यक्त कर सकता है जिसमें तीन से अधिक चर नहीं होते हैं। (एक दिए गए चर को कई बार परिमाणित किया जा सकता है और इसलिए परिमाणकों को "पुन: उपयोग" चर द्वारा मनमाने ढंग से गहराई से नेस्ट किया जा सकता है।){{citation needed|reason=See section 'Quantifier nesting' on talk page. Moreover, the treatment of ternary, etc., relations should be made clear.|date=March 2019}} हैरानी की बात है कि एफओएल का यह टुकड़ा [[पियानो अंकगणित]] और लगभग सभी स्वयंसिद्ध सेट सिद्धांतों को कभी भी प्रस्तावित करने के लिए पर्याप्त है, इसलिए '''RA''' वास्तव में लगभग सभी गणित को बीजगणित करने का तरीका है, जबकि एफओएल और इसके [[तार्किक संयोजक]], [[परिमाणक (तर्क)]] एस, [[घूमने वाला दरवाज़ा (प्रतीक)]], और [[मूड सेट करना|मूड समुच्चय करना]] के साथ वितरण करता है, क्योंकि '''RA''' पीनो अंकगणित और समुच्चय सिद्धांत को व्यक्त कर सकता है, गोडेल की अपूर्णता प्रमेय इस पर लागू होती है; '''RA''' गोडेल की अपूर्णता प्रमेय, अपूर्ण और [[अनिर्णीत समस्या]] है।{{Citation needed|date=April 2012}} (एन.बी. '''RA''' का बूलियन बीजगणित अंश पूर्ण और निर्णायक है।)


प्रतिनिधित्व करने योग्य संबंध बीजगणित, वर्ग आरआरए का निर्माण करते हैं, वे संबंध बीजगणित हैं जो कुछ सेट पर द्विआधारी संबंधों से युक्त कुछ संबंध बीजगणित के समरूप होते हैं, और आरए संचालन की इच्छित व्याख्या के तहत बंद हो जाते हैं। यह आसानी से दिखाया जाता है, उदा। [[छद्मप्राथमिक वर्ग]]ों की विधि का उपयोग करते हुए, कि आरआरए अर्धविविधता है, जो कि सार्वभौमिक हॉर्न सिद्धांत द्वारा स्वयंसिद्ध है। 1950 में, [[रोजर लिंडन]] ने RRA में धारण करने वाले समीकरणों के अस्तित्व को सिद्ध किया जो RA में नहीं था। इसलिए आरआरए द्वारा सृजित विविधता आरए किस्म की उचित उप-किस्म है। 1955 में, अल्फ्रेड टार्स्की ने दिखाया कि आरआरए अपने आप में किस्म है। 1964 में, डोनाल्ड मोंक ने दिखाया कि आरआरए के पास आरए के विपरीत कोई परिमित स्वयंसिद्ध नहीं है, जो कि परिभाषा के अनुसार अंतिम रूप से स्वयंसिद्ध है।
प्रतिनिधित्व करने योग्य संबंध बीजगणित, वर्ग '''RRA''' का निर्माण करते हैं, वे संबंध बीजगणित हैं जो कुछ समुच्चय पर द्विआधारी संबंधों से युक्त कुछ संबंध बीजगणित के समरूप होते हैं, और आरए संचालन की इच्छित व्याख्या के तहत बंद हो जाते हैं। यह आसानी से दिखाया जाता है, उदाहरण के लिए [[छद्मप्राथमिक वर्ग]]ों की विधि का उपयोग करते हुए, कि '''RRA''' अर्धविविधता है, जो कि सार्वभौमिक हॉर्न सिद्धांत द्वारा स्वयंसिद्ध है। 1950 में, [[रोजर लिंडन]] ने '''RRA''' में धारण करने वाले समीकरणों के अस्तित्व को सिद्ध किया जो '''RA''' में नहीं था, इसलिए '''RRA''' द्वारा सृजित विविधता आरए किस्म की उचित उप-किस्म है। 1955 में, अल्फ्रेड टार्स्की ने दिखाया कि आरआरए अपने आप में किस्म है। 1964 में, डोनाल्ड मोंक ने दिखाया कि '''RRA''' के पास '''RA''' के विपरीत कोई परिमित स्वयंसिद्ध नहीं है, जो कि परिभाषा के अनुसार अंतिम रूप से स्वयंसिद्ध है।


=== क्यू-संबंध बीजगणित ===
=== क्यू-संबंध बीजगणित ===
एक RA Q-संबंध बीजगणित (QRA) है, यदि B1-B10 के अलावा, कुछ ''A'' और ''B'' मौजूद हैं, जैसे कि (टार्स्की और गिवंत 1987: §8.4):
'''RA,''' '''Q'''-संबंध बीजगणित ('''QRA''') है, यदि '''B1-B10''' के अलावा, कुछ ''A'' और ''B'' मौजूद हैं, जैसे कि (टार्स्की और गिवंत 1987: §8.4):


:Q0: {{math|1=''A''˘•''A'' ≤ '''I'''}}
:: '''Q0''': ''A''˘•''A'' ≤ '''I'''
:Q1: {{math|1=''B''˘•''B'' ≤ '''I'''}}
:: '''Q1''': ''B''˘•''B'' ≤ '''I'''
:उल्टी करना: {{math|1=''A''˘•''B'' = 1}}
:: '''Q2''': ''A''˘•''B'' = 1
अनिवार्य रूप से इन स्वयंसिद्धों का अर्थ है कि ब्रह्मांड का (गैर-आच्छादन) युग्मन संबंध है जिसका अनुमान ए और बी है। यह प्रमेय है कि प्रत्येक 'क्यूआरए' 'आरआरए' है (मैडक्स द्वारा प्रमाण, टार्स्की और गिवंत 1987 देखें: 8.4 ( iii) ).
:
अनिवार्य रूप से इन स्वयंसिद्धों का अर्थ है कि ब्रह्मांड में एक (गैर-प्रत्यक्ष) युग्म संबंध है जिसका प्रक्षेपण ए और बी हैं। यह एक प्रमेय है कि प्रत्येक '''QRA''' एक '''RRA''' है (मैडक्स द्वारा प्रमाण, टार्स्की और गिवेंट 1987 देखें: 8.4 (iii))


प्रत्येक 'क्यूआरए' प्रतिनिधित्व योग्य है (तर्स्की और गिवंत 1987)यह कि प्रत्येक संबंध बीजगणित प्रतिनिधित्व योग्य नहीं है, मौलिक तरीका है 'आरए' 'क्यूआरए' और बूलियन बीजगणित (संरचना) से भिन्न है, जो बूलियन बीजगणित के लिए स्टोन के प्रतिनिधित्व प्रमेय द्वारा, हमेशा कुछ सेट के सबसेट के सेट के रूप में प्रतिनिधित्व योग्य होते हैं, संघ के तहत बंद , चौराहा, और पूरक।
प्रत्येक क्यूआरए प्रतिनिधित्व योग्य (तर्स्की और गिवंत 1987) है। यह कि प्रत्येक संबंध बीजगणित प्रतिनिधित्व योग्य नहीं है, एक मौलिक तरीका है '''RA''', '''QRA''' और बूलियन बीजगणित से भिन्न है, जो बूलियन बीजगणित के लिए स्टोन के प्रतिनिधित्व प्रमेय द्वारा, हमेशा कुछ सेट के सबसेट के सेट के रूप में प्रतिनिधित्व योग्य होते हैं, संघ, चौराहे और पूरक के तहत बंद होते हैं।


== उदाहरण ==
== उदाहरण ==
# किसी भी बूलियन बीजगणित को रचना के रूप में संयुग्मन की व्याख्या करके RA में बदल दिया जा सकता है (मोनॉइड गुणन •), यानी ''x''•''y'' को ''x''∧''y'' के रूप में परिभाषित किया गया है। इस व्याख्या के लिए आवश्यक है कि विपरीत व्याख्या पहचान (''ў'' = ''y''), और दोनों अवशिष्ट ''y''\''x'' और ''x''/''y'' व्याख्या करें सशर्त ''y''→''x'' (यानी, ¬''y''∨''x'')
# किसी भी बूलियन बीजगणित को संयोजन (मोनॉयड गुणा •) के रूप में संयोजन की व्याख्या करके आरए में बदल दिया जा सकता है, यानी x•y को x∧y के रूप में परिभाषित किया गया है। इस व्याख्या के लिए आवश्यक है कि विपरीत व्याख्या पहचान (ў = y), और दोनों अवशिष्ट y\x और x/y सशर्त y→x (यानी, ¬y∨x) की व्याख्या की जा सकती है।
# एक संबंध बीजगणित का प्रेरक उदाहरण किसी भी उपसमुच्चय के रूप में सेट 'एक्स' पर द्विआधारी संबंध 'आर' की परिभाषा पर निर्भर करता है {{math|1=''R'' ⊆ ''X''²}}, कहाँ {{math|1=''X''²}} X का कार्टेशियन वर्ग है। पावर सेट 2<sup>X²</sup> जिसमें X पर सभी द्विआधारी संबंध शामिल हैं, बूलियन बीजगणित है। जबकि  {{math|1=2<sup>''X''²</sup>}} लेकर संबंध बीजगणित बनाया जा सकता है {{math|1=''R''•''S'' = ''R''∧''S''}}ऊपर उदाहरण (1) के अनुसार, • की मानक व्याख्या इसके बजाय है {{math|1=''x''(''R''•''S'')''z'' = ∃''y'':''xRy.ySz''}}. अर्थात्, [[क्रमित युग्म]] (x, z) संबंध R•S से संबंधित है, जब वहाँ मौजूद है {{math|1=''y'' ∈ ''X''}} ऐसा है कि {{math|1=(''x'',''y'') ∈ ''R''}} और {{math|1=(''y'',''z'') ∈ ''S''}}. यह व्याख्या विशिष्ट रूप से R\S को सभी जोड़े (y, z) से मिलकर निर्धारित करती है जैसे कि सभी के लिए {{math|1=''x'' ∈ ''X''}}, अगर xRy तो xSz। वास्तव में, S/R में सभी जोड़े (x,y) होते हैं जैसे कि सभी z ∈ X के लिए, यदि yRz तो xSz। अनुवाद {{math|1=''ў'' = ¬(y\¬'''I''')}} फिर R के विलोम R˘ को सभी जोड़े (y,x) से मिलकर स्थापित करता है जैसे कि (x,y) ∈ R.
# एक संबंध बीजगणित का प्रेरक उदाहरण किसी भी उपसमुच्चय के रूप में समुच्चय 'एक्स' पर द्विआधारी संबंध 'आर' की परिभाषा पर निर्भर करता है {{math|1=''R'' ⊆ ''X''²}}, कहाँ {{math|1=''X''²}} X का कार्टेशियन वर्ग है। पावर समुच्चय 2<sup>X²</sup> जिसमें X पर सभी द्विआधारी संबंध शामिल हैं, बूलियन बीजगणित है। जबकि  {{math|1=2<sup>''X''²</sup>}} लेकर संबंध बीजगणित बनाया जा सकता है {{math|1=''R''•''S'' = ''R''∧''S''}} ऊपर उदाहरण (1) के अनुसार, • की मानक व्याख्या इसके बजाय है {{math|1=''x''(''R''•''S'')''z'' = ∃''y'':''xRy.ySz''}}. अर्थात्, [[क्रमित युग्म]] (x, z) संबंध R•S से संबंधित है, जब वहाँ मौजूद है {{math|1=''y'' ∈ ''X''}} ऐसा है कि {{math|1=(''x'',''y'') ∈ ''R''}} और {{math|1=(''y'',''z'') ∈ ''S''}}. यह व्याख्या विशिष्ट रूप से R\S को सभी जोड़े (y, z) से मिलकर निर्धारित करती है जैसे कि सभी के लिए {{math|1=''x'' ∈ ''X''}}, अगर xRy तो xSz। वास्तव में, S/R में सभी जोड़े (x,y) होते हैं जैसे कि सभी z ∈ X के लिए, यदि yRz तो xSz। अनुवाद {{math|1=''ў'' = ¬(y\¬'''I''')}} फिर R के विलोम R˘ को सभी जोड़े (y,x) से मिलकर स्थापित करता है जैसे कि (x,y) ∈ R.
# पिछले उदाहरण का महत्वपूर्ण सामान्यीकरण पावर सेट 2 है<sup>ई</sup> जहां {{math|1=''E'' ⊆ ''X''²}} समुच्चय X पर कोई [[तुल्यता संबंध]] है। यह सामान्यीकरण है क्योंकि {{math|1=''X''²}} स्वयं तुल्यता संबंध है, अर्थात् सभी युग्मों से युक्त पूर्ण संबंध। जबकि 2<sup>E</sup> का उप-लजेब्रा नहीं है {{math|1=2<sup>''X''²</sup>}} कब {{math|1=''E'' ≠ ''X''²}} (चूंकि उस मामले में इसमें संबंध नहीं है {{math|1=''X''²}}, शीर्ष तत्व 1 के बजाय E है {{math|1=''X''²}}), फिर भी इसे संक्रियाओं की समान परिभाषाओं का उपयोग करते हुए संबंध बीजगणित में बदल दिया जाता है। इसका महत्व प्रतिनिधित्व योग्य संबंध बीजगणित की परिभाषा में रहता है क्योंकि संबंध बीजगणित 2 के उप-लजेब्रा के लिए कोई भी संबंध बीजगणित समसामयिक है<sup>E</sup> किसी समुच्चय पर कुछ तुल्यता संबंध E के लिए। पिछला खंड प्रासंगिक मेटामैथमेटिक्स के बारे में अधिक बताता है।
# पिछले उदाहरण का महत्वपूर्ण सामान्यीकरण पावर समुच्चय 2 है<sup>ई</sup> जहां {{math|1=''E'' ⊆ ''X''²}} समुच्चय X पर कोई [[तुल्यता संबंध]] है। यह सामान्यीकरण है क्योंकि {{math|1=''X''²}} स्वयं तुल्यता संबंध है, अर्थात् सभी युग्मों से युक्त पूर्ण संबंध। जबकि 2<sup>E</sup> का उप-लजेब्रा नहीं है {{math|1=2<sup>''X''²</sup>}} कब {{math|1=''E'' ≠ ''X''²}} (चूंकि उस मामले में इसमें संबंध नहीं है {{math|1=''X''²}}, शीर्ष तत्व 1 के बजाय E है {{math|1=''X''²}}), फिर भी इसे संक्रियाओं की समान परिभाषाओं का उपयोग करते हुए संबंध बीजगणित में बदल दिया जाता है। इसका महत्व प्रतिनिधित्व योग्य संबंध बीजगणित की परिभाषा में रहता है क्योंकि संबंध बीजगणित 2 के उप-लजेब्रा के लिए कोई भी संबंध बीजगणित समसामयिक है<sup>E</sup> किसी समुच्चय पर कुछ तुल्यता संबंध E के लिए। पिछला खंड प्रासंगिक मेटामैथमेटिक्स के बारे में अधिक बताता है।
# होने देना {{mvar|G}} समूह हो। फिर बिजली सेट <math>2^G</math> स्पष्ट बूलियन बीजगणित संचालन के साथ संबंध बीजगणित है, समूह उपसमुच्चय के उत्पाद द्वारा दी गई संरचना, व्युत्क्रम उपसमुच्चय द्वारा विलोम (<math>A^{-1} = \{a^{-1}\mid a\in A\}</math>), और सिंगलटन सबसेट द्वारा पहचान <math>\{e\}</math>. संबंध बीजगणित समरूपता एम्बेडिंग है <math>2^G</math> में <math>2^{G\times G}</math> जो प्रत्येक सबसेट भेजता है <math>A\subset G</math> संबंध के लिए <math>R_A = \{(g, h)\in G \times G\mid h\in A g\}</math>. इस समरूपता की छवि सभी सही-अपरिवर्तनीय संबंधों का समुच्चय है {{mvar|G}}.
# होने देना {{mvar|G}} समूह हो। फिर बिजली समुच्चय <math>2^G</math> स्पष्ट बूलियन बीजगणित संचालन के साथ संबंध बीजगणित है, समूह उपसमुच्चय के उत्पाद द्वारा दी गई संरचना, व्युत्क्रम उपसमुच्चय द्वारा विलोम (<math>A^{-1} = \{a^{-1}\mid a\in A\}</math>), और सिंगलटन सबसमुच्चय द्वारा पहचान <math>\{e\}</math>. संबंध बीजगणित समरूपता एम्बेडिंग है <math>2^G</math> में <math>2^{G\times G}</math> जो प्रत्येक सबसमुच्चय भेजता है <math>A\subset G</math> संबंध के लिए <math>R_A = \{(g, h)\in G \times G\mid h\in A g\}</math>. इस समरूपता की छवि सभी सही-अपरिवर्तनीय संबंधों का समुच्चय है {{mvar|G}}.
# यदि समूह योग या गुणन रचना की व्याख्या करता है, तो समूह (गणित)#परिभाषा विलोम की व्याख्या करता है, समूह पहचान की व्याख्या करता है {{math|1='''I'''}}, और यदि R एक-से-एक पत्राचार है, ताकि {{math|1=''R''˘•''R'' = ''R•R''˘ = '''I'''}},<ref>[[Alfred Tarski|Tarski, A.]] (1941), p. 87.</ref> तो एल समूह (गणित) के साथ-साथ मोनोइड भी है। 'बी4'-'बी7' [[समूह सिद्धांत]] के प्रसिद्ध प्रमेय बन जाते हैं, जिससे 'आरए' समूह सिद्धांत के साथ-साथ बूलियन बीजगणित का [[उचित विस्तार]] बन जाता है।
# यदि समूह योग या गुणन रचना की व्याख्या करता है, तो समूह (गणित)#परिभाषा विलोम की व्याख्या करता है, समूह पहचान की व्याख्या करता है {{math|1='''I'''}}, और यदि R एक-से-एक पत्राचार है, ताकि {{math|1=''R''˘•''R'' = ''R•R''˘ = '''I'''}},<ref>[[Alfred Tarski|Tarski, A.]] (1941), p. 87.</ref> तो एल समूह (गणित) के साथ-साथ मोनोइड भी है। 'बी4'-'बी7' [[समूह सिद्धांत]] के प्रसिद्ध प्रमेय बन जाते हैं, जिससे 'आरए' समूह सिद्धांत के साथ-साथ बूलियन बीजगणित का [[उचित विस्तार]] बन जाता है।


== ऐतिहासिक टिप्पणी ==
== ऐतिहासिक टिप्पणी ==
ऑगस्टस डी मॉर्गन ने 1860 में आरए की स्थापना की, लेकिन चार्ल्स सैंडर्स पियर्स | सी। एस. पियर्स ने इसे और आगे बढ़ाया और इसकी दार्शनिक शक्ति से मुग्ध हो गए। DeMorgan और Peirce के काम को मुख्य रूप से अर्नस्ट श्रोडर (गणितज्ञ) के विस्तारित और निश्चित रूप में जाना जाता है। अर्नस्ट श्रोडर ने इसे वॉल्यूम में दिया था। उनके वोरलेसुंगेन (1890-1905) में से 3। [[गणितीय सिद्धांत]] ने श्रोडर के आरए पर दृढ़ता से आकर्षित किया, लेकिन उन्हें केवल संकेतन के आविष्कारक के रूप में स्वीकार किया। 1912 में, [[एल्विन कोर्सेल्ट]] ने साबित किया कि विशेष सूत्र जिसमें क्वांटिफायर को चार गहरे में नेस्टेड किया गया था, उसका कोई आरए समतुल्य नहीं था।<ref>Korselt did not publish his finding. It was first published in [[Leopold Loewenheim]] (1915) "Über Möglichkeiten im Relativkalkül," ''[[Mathematische Annalen]]'' 76: 447–470. Translated as "On possibilities in the calculus of relatives" in [[Jean van Heijenoort]], 1967. ''A Source Book in Mathematical Logic, 1879–1931''. Harvard Univ. Press: 228–251.</ref> इस तथ्य के कारण आरए में दिलचस्पी कम हो गई जब तक कि टार्स्की (1941) ने इसके बारे में लिखना शुरू नहीं किया। उनके छात्रों ने आज तक आरए को विकसित करना जारी रखा है। टार्स्की 1970 के दशक में स्टीवन गिवेंट की मदद से आरए में लौट आए; इस सहयोग के परिणामस्वरूप टार्स्की और गिवंत (1987) द्वारा मोनोग्राफ तैयार किया गया, जो इस विषय के लिए निश्चित संदर्भ था। आरए के इतिहास पर अधिक जानकारी के लिए, मैडक्स (1991, 2006) देखें।
ऑगस्टस डी मॉर्गन ने 1860 में आरए की स्थापना की, लेकिन चार्ल्स सैंडर्स पियर्स | सी। एस. पियर्स ने इसे और आगे बढ़ाया और इसकी दार्शनिक घात से मुग्ध हो गए। DeMorgan और Peirce के काम को मुख्य रूप से अर्नस्ट श्रोडर (गणितज्ञ) के विस्तारित और निश्चित रूप में जाना जाता है। अर्नस्ट श्रोडर ने इसे वॉल्यूम में दिया था। उनके वोरलेसुंगेन (1890-1905) में से 3। [[गणितीय सिद्धांत]] ने श्रोडर के आरए पर दृढ़ता से आकर्षित किया, लेकिन उन्हें केवल संकेतन के आविष्कारक के रूप में स्वीकार किया। 1912 में, [[एल्विन कोर्सेल्ट]] ने साबित किया कि विशेष सूत्र जिसमें क्वांटिफायर को चार गहरे में नेस्टेड किया गया था, उसका कोई आरए समतुल्य नहीं था।<ref>Korselt did not publish his finding. It was first published in [[Leopold Loewenheim]] (1915) "Über Möglichkeiten im Relativkalkül," ''[[Mathematische Annalen]]'' 76: 447–470. Translated as "On possibilities in the calculus of relatives" in [[Jean van Heijenoort]], 1967. ''A Source Book in Mathematical Logic, 1879–1931''. Harvard Univ. Press: 228–251.</ref> इस तथ्य के कारण आरए में दिलचस्पी कम हो गई जब तक कि टार्स्की (1941) ने इसके बारे में लिखना शुरू नहीं किया। उनके छात्रों ने आज तक आरए को विकसित करना जारी रखा है। टार्स्की 1970 के दशक में स्टीवन गिवेंट की मदद से आरए में लौट आए; इस सहयोग के परिणामस्वरूप टार्स्की और गिवंत (1987) द्वारा मोनोग्राफ तैयार किया गया, जो इस विषय के लिए निश्चित संदर्भ था। आरए के इतिहास पर अधिक जानकारी के लिए, मैडक्स (1991, 2006) देखें।


== सॉफ्टवेयर ==
== सॉफ्टवेयर ==

Revision as of 09:25, 27 February 2023

गणित और सार बीजगणित में, एक संबंध बीजगणित अवक्षेपण (गणित) के साथ अवशिष्ट बूलियन बीजगणित घटाव होता है जिसे कॉनवर्स, एक यूनरी ऑपरेशन कहा जाता है। किसी संबंध बीजगणित के प्रेरक उदाहरण को X समुच्चय पर सभी द्विआधारी संबंधों में 2X² बीजगणित कहते हैं, अर्थात कार्तीय वर्ग X2 के उपसमुच्चय, जिसमें R•S के साथ संबंध R और S की सामान्य संरचना के रूप में व्याख्यायित किया जाता है तथा R को अन्योन्य संबंध कहा जाता है।

संबंध बीजगणित ऑगस्टस डी मॉर्गन और चार्ल्स सैंडर्स पियर्स के 19 वीं शताब्दी के काम में उभरा, जिसका समापन अर्नस्ट श्रोडर(गणितज्ञ) के बीजगणितीय तर्क में समाप्त हुआ था। 1940 के दशक में शुरू होने वाले संबंध बीजगणित के समतुल्य रूप को अल्फ्रेड टार्स्की और उनके छात्रों द्वारा विकसित किया गया था। तर्स्की और गिवंत (1987) ने संबंध बीजगणित को स्वयंसिद्ध समुच्चय सिद्धांत के चर-मुक्त उपचार के लिए लागू किया, इस निहितार्थ के साथ कि समुच्चय सिद्धांत पर स्थापित गणित स्वयं चर के बिना आयोजित किया जा सकता है।

परिभाषा

एक संबंध बीजगणित (L, ∧, ∨, , 0, 1, •, I, ˘) बीजगणितीय संरचना है जो संयोजन X∧y, वियोजन X∨y, और निषेध X के बूलियन संचालन से लैस है, बूलियन स्थिरांक 0 और 1, रचना X • y और इसका विपरीत X˘ के संबंधपरक संचालन, और संबंधपरक स्थिरांक I, जैसे कि ये संचालन और स्थिरांक कुछ समीकरणों को संतुष्ट करते हैं, जो संबंधों के एक पथरी के स्वयंसिद्धता का निर्माण करते हैं। मोटे तौर पर, संबंध बीजगणित समुच्चय पर द्विआधारी संबंधों की प्रणाली है जिसमें खाली संबंध (0), सार्वभौमिक संबंध (1), और पहचान संबंध शामिल हैं। (I) समूह (गणित) के रूप में इन पांच परिचालनों के तहत संबंध और बंद समुच्चय के क्रमपरिवर्तन की प्रणाली है जिसमें पहचान क्रमपरिवर्तन होता है और रचना और व्युत्क्रम के तहत बंद होता है। हालाँकि, संबंध बीजगणित का प्रथम-क्रम तर्क सिद्धांत (तर्क) द्विआधारी संबंधों की ऐसी प्रणालियों के लिए पूर्णता (तर्क) नहीं है।

जॉनसन और सिनाकिस (1993) के अनुसार अतिरिक्त संक्रियाओं x◁y = x•y˘, और, दोहरे रूप से, x▷y = x˘•y को परिभाषित करना सुविधाजनक है। जॉनसन और सिनाकिस ने दिखाया कि Ix = xI, और यह कि दोनों x˘ के बराबर थे। इसलिए एक संबंध बीजगणित को समान रूप से एक बीजगणितीय संरचना (L, ∧, ∨, , 0, 1, •, I, ◁, ▷) के रूप में परिभाषित किया जा सकता है। सामान्य हस्ताक्षर पर इस हस्ताक्षर (तर्क) का लाभ यह है कि जिसके लिए Ix एक अंतर्वलन है, अर्थात, I◁(Ix) = x का एक संबंध बीजगणित को पूर्ण रूप से एक अवशिष्ट बूलियन बीजगणित के रूप में परिभाषित किया जा सकता है। बाद की स्थिति को साधारण अंकगणितीय पारस्परिक के लिए समीकरण 1/(1/x) = x के संबंधपरक प्रतिरूप के रूप में माना जा सकता है, और कुछ लेखक व्युत्क्रम को बातचीत के पर्याय के रूप में उपयोग करते हैं।

चूंकि अवशिष्ट बूलियन बीजगणित परिमित रूप से अनेक सर्वसमिकाओं के साथ अभिगृहीत होते हैं, इसलिए संबंध बीजगणित होते हैं। आरऐ उत्तरार्द्ध विविधता (सार्वभौमिक बीजगणित) के विभिन्न प्रकारों का समुच्चय बनाता है। उपर्युक्त परिभाषा को समीकरणों के रूप में विस्तारित करने से निम्नलिखित परिमित स्वयंसिद्धता प्राप्त होती है।

अभिगृहीत

नीचे दिए गए अभिगृहीत B1-B10 जीवांत (2006: 283) से अनुकूलित हैं, और पहली बार 1948 में टार्स्की द्वारा निर्धारित किए गए थे।[1]

L बाइनरी अलगाव के तहत एकबूलियन बीजगणित (संरचना) है, ∨, और एकात्मक पूरकता ()-:

B1: AB = BA
B2: A ∨ (BC) = (AB) ∨ C
B3: (AB) ∨ (AB) = A

बूलियन बीजगणित का यह स्वसिद्धीकरण एडवर्ड वर्मिली हंटिंगटन (1933) के कारण है। ध्यान दें कि निहित बूलियन बीजगणित का मिलन • ऑपरेटर नहीं है, (भले ही यह ∨ पर वितरित करता है जैसे एक मिलन करता है) न ही बूलियन बीजगणित का 1 I स्थिरांक है।

L द्विआधारी संरचना (•) और अशक्त पहचान I के तहत एक मोनोइड है:

B4: A•(BC) = (AB)•C
B5: AI = A

यूनरी कन्वर्स ()˘ रचना के संबंध में एक अंतर्वलन है:

B6: A˘˘ = A
B7: (AB)˘ = B˘•A˘

अभिगृहीत B6 रूपांतरण को एक समावेशन(गणित) के रूप में परिभाषित करता है, जबकि B7 रचना के सापेक्ष रूपांतरण के प्रतिपक्षी गुण को व्यक्त करता है।[2]

संयोजन पर बातचीत और संरचना वितरण:

B8: (AB)˘ = A˘∨B˘
B9: (AB)•C = (AC)∨(BC)

B10 ऑगस्टस डी मॉर्गन द्वारा खोजे गए तथ्य का टार्स्की का समीकरण रूप है ABCA˘•CBCB˘ ≤ A

B10: (A˘•(AB))∨B = B

ये अभिगृहीत ज़ैडएफसी प्रमेय हैं; विशुद्ध रूप से बूलियन बी1-बी3 के लिए, यह तथ्य तुच्छ है। निम्नलिखित में से प्रत्येक स्वयंसिद्ध के बाद सपेस (1960) के अध्याय 3 में संबंधित प्रमेय की संख्या दिखाई गई है, ज़ैडएफसी की एक प्रदर्शनी: B4 27, B5 45, B6 14, B7 26, B8 16, B9 23 है।

आरए में द्विआधारी संबंधों के गुण व्यक्त करना

निम्न तालिका दर्शाती है कि द्विआधारी संबंधों के कितने सामान्य गुणों को संक्षिप्त आरए समानता या असमानता के रूप में व्यक्त किया जा सकता है। नीचे, A ≤ B फ़ॉर्म की असमानता बूलियन समीकरण के लिए शॉर्टहैंड है AB = B.

इस प्रकृति के परिणामों का सबसे पूर्ण सेट कार्नाप (1958) का अध्याय C है, जहां संकेतन इस प्रविष्टि से काफी दूर है। सपेस (1960) के अध्याय 3.2 में कम परिणाम शामिल हैं, जो ZFC प्रमेय के रूप में प्रस्तुत किए गए हैं और एक नोटेशन का उपयोग कर रहे हैं जो इस प्रविष्टि के समान है। इस प्रविष्टि के RA का उपयोग करके या एक समान तरीके से न तो कार्नैप और न ही सपेस ने अपने परिणाम तैयार किए थे।

R is If and only if:
प्रकायाणत्मक R˘•RI
वाचिक-योग IRR˘ (R˘ कर्तृपदीय है)
फलन प्रकायाणत्मक और वाचिक-योग
एकैकी RR˘ ≤ I (R˘ प्रकायाणत्मक है)
कर्तृपदीय IR˘•R (R˘ वाचिक-योग है)
द्विभाजित R˘•R = RR˘ = I (एकैकी कर्तृपदीय फलन)
संक्रामी RRR
स्वतुल्य IR
सहस्वतुल्य RI
अपरावर्ती RI = 0
सममिति R˘ = R
प्रतिसममित RR˘ ≤ I
असममिति RR˘ = 0
दृढ़ संबद्ध RR˘ = 1
संबद्ध IRR˘ = 1
इडैम्पोटेन्ट RR = R
पूर्व आदेश R सकर्मक और स्वतुल्य है।
समतुल्यता R सममित प्रीऑर्डर है।
आंशिक क्रम R एंटीसिमेट्रिक प्रीऑर्डर है।
कुल क्रम R दृढ़ता से जुड़ा हुआ है और आंशिक क्रम है।
पूर्णतः आंशिक क्रम R सकर्मक और अकाट्य है।
पूर्णतः कुल क्रम R जुड़ा हुआ है और सख्त आंशिक क्रम है।
सघन RI ≤ (RI)•(RI).


अभिव्यंजक घात

गिवंत (2006) के अधिक संक्षेप में RA के मेटामैथमैटिक्स पर तार्स्की और गिवंत (1987) में विस्तार से चर्चा की गई है।

आरए में पूरी तरह से समान प्रतिस्थापन और समान के लिए समान के प्रतिस्थापन से अधिक कुछ नहीं का उपयोग करके हेरफेर किए गए समीकरण शामिल हैं। दोनों नियम स्कूली गणित और अमूर्त बीजगणित से पूरी तरह परिचित हैं। इसलिए आरए प्रमाणों को सभी गणितज्ञों से परिचित तरीके से किया जाता है, आम तौर पर गणितीय तर्क के मामले के विपरीत।

RA में पूरी तरह से समान प्रतिस्थापन और समान के लिए समान के प्रतिस्थापन से अधिक कुछ नहीं का उपयोग करके हेरफेर किए गए समीकरण शामिल हैं। दोनों नियम स्कूली गणित और अमूर्त बीजगणित से पूरी तरह परिचित हैं, इसलिए आम तौर पर गणितीय तर्क के मामले के विपरीत RA प्रमाणों को सभी गणितज्ञों से परिचित तरीके से किया जाता है।

RA किसी भी (और तार्किक तुल्यता तक, बिल्कुल) प्रथम-क्रम तर्क (एफओएल) सूत्रों को व्यक्त कर सकता है जिसमें तीन से अधिक चर नहीं होते हैं। (एक दिए गए चर को कई बार परिमाणित किया जा सकता है और इसलिए परिमाणकों को "पुन: उपयोग" चर द्वारा मनमाने ढंग से गहराई से नेस्ट किया जा सकता है।)[citation needed] हैरानी की बात है कि एफओएल का यह टुकड़ा पियानो अंकगणित और लगभग सभी स्वयंसिद्ध सेट सिद्धांतों को कभी भी प्रस्तावित करने के लिए पर्याप्त है, इसलिए RA वास्तव में लगभग सभी गणित को बीजगणित करने का तरीका है, जबकि एफओएल और इसके तार्किक संयोजक, परिमाणक (तर्क) एस, घूमने वाला दरवाज़ा (प्रतीक), और मूड समुच्चय करना के साथ वितरण करता है, क्योंकि RA पीनो अंकगणित और समुच्चय सिद्धांत को व्यक्त कर सकता है, गोडेल की अपूर्णता प्रमेय इस पर लागू होती है; RA गोडेल की अपूर्णता प्रमेय, अपूर्ण और अनिर्णीत समस्या है।[citation needed] (एन.बी. RA का बूलियन बीजगणित अंश पूर्ण और निर्णायक है।)

प्रतिनिधित्व करने योग्य संबंध बीजगणित, वर्ग RRA का निर्माण करते हैं, वे संबंध बीजगणित हैं जो कुछ समुच्चय पर द्विआधारी संबंधों से युक्त कुछ संबंध बीजगणित के समरूप होते हैं, और आरए संचालन की इच्छित व्याख्या के तहत बंद हो जाते हैं। यह आसानी से दिखाया जाता है, उदाहरण के लिए छद्मप्राथमिक वर्गों की विधि का उपयोग करते हुए, कि RRA अर्धविविधता है, जो कि सार्वभौमिक हॉर्न सिद्धांत द्वारा स्वयंसिद्ध है। 1950 में, रोजर लिंडन ने RRA में धारण करने वाले समीकरणों के अस्तित्व को सिद्ध किया जो RA में नहीं था, इसलिए RRA द्वारा सृजित विविधता आरए किस्म की उचित उप-किस्म है। 1955 में, अल्फ्रेड टार्स्की ने दिखाया कि आरआरए अपने आप में किस्म है। 1964 में, डोनाल्ड मोंक ने दिखाया कि RRA के पास RA के विपरीत कोई परिमित स्वयंसिद्ध नहीं है, जो कि परिभाषा के अनुसार अंतिम रूप से स्वयंसिद्ध है।

क्यू-संबंध बीजगणित

RA, Q-संबंध बीजगणित (QRA) है, यदि B1-B10 के अलावा, कुछ A और B मौजूद हैं, जैसे कि (टार्स्की और गिवंत 1987: §8.4):

Q0: A˘•AI
Q1: B˘•BI
Q2: A˘•B = 1

अनिवार्य रूप से इन स्वयंसिद्धों का अर्थ है कि ब्रह्मांड में एक (गैर-प्रत्यक्ष) युग्म संबंध है जिसका प्रक्षेपण ए और बी हैं। यह एक प्रमेय है कि प्रत्येक QRA एक RRA है (मैडक्स द्वारा प्रमाण, टार्स्की और गिवेंट 1987 देखें: 8.4 (iii))।

प्रत्येक क्यूआरए प्रतिनिधित्व योग्य (तर्स्की और गिवंत 1987) है। यह कि प्रत्येक संबंध बीजगणित प्रतिनिधित्व योग्य नहीं है, एक मौलिक तरीका है RA, QRA और बूलियन बीजगणित से भिन्न है, जो बूलियन बीजगणित के लिए स्टोन के प्रतिनिधित्व प्रमेय द्वारा, हमेशा कुछ सेट के सबसेट के सेट के रूप में प्रतिनिधित्व योग्य होते हैं, संघ, चौराहे और पूरक के तहत बंद होते हैं।

उदाहरण

  1. किसी भी बूलियन बीजगणित को संयोजन (मोनॉयड गुणा •) के रूप में संयोजन की व्याख्या करके आरए में बदल दिया जा सकता है, यानी x•y को x∧y के रूप में परिभाषित किया गया है। इस व्याख्या के लिए आवश्यक है कि विपरीत व्याख्या पहचान (ў = y), और दोनों अवशिष्ट y\x और x/y सशर्त y→x (यानी, ¬y∨x) की व्याख्या की जा सकती है।
  2. एक संबंध बीजगणित का प्रेरक उदाहरण किसी भी उपसमुच्चय के रूप में समुच्चय 'एक्स' पर द्विआधारी संबंध 'आर' की परिभाषा पर निर्भर करता है RX², कहाँ X² X का कार्टेशियन वर्ग है। पावर समुच्चय 2 जिसमें X पर सभी द्विआधारी संबंध शामिल हैं, बूलियन बीजगणित है। जबकि 2X² लेकर संबंध बीजगणित बनाया जा सकता है RS = RS ऊपर उदाहरण (1) के अनुसार, • की मानक व्याख्या इसके बजाय है x(RS)z = ∃y:xRy.ySz. अर्थात्, क्रमित युग्म (x, z) संबंध R•S से संबंधित है, जब वहाँ मौजूद है yX ऐसा है कि (x,y) ∈ R और (y,z) ∈ S. यह व्याख्या विशिष्ट रूप से R\S को सभी जोड़े (y, z) से मिलकर निर्धारित करती है जैसे कि सभी के लिए xX, अगर xRy तो xSz। वास्तव में, S/R में सभी जोड़े (x,y) होते हैं जैसे कि सभी z ∈ X के लिए, यदि yRz तो xSz। अनुवाद ў = ¬(y\¬I) फिर R के विलोम R˘ को सभी जोड़े (y,x) से मिलकर स्थापित करता है जैसे कि (x,y) ∈ R.
  3. पिछले उदाहरण का महत्वपूर्ण सामान्यीकरण पावर समुच्चय 2 है जहां EX² समुच्चय X पर कोई तुल्यता संबंध है। यह सामान्यीकरण है क्योंकि X² स्वयं तुल्यता संबंध है, अर्थात् सभी युग्मों से युक्त पूर्ण संबंध। जबकि 2E का उप-लजेब्रा नहीं है 2X² कब EX² (चूंकि उस मामले में इसमें संबंध नहीं है X², शीर्ष तत्व 1 के बजाय E है X²), फिर भी इसे संक्रियाओं की समान परिभाषाओं का उपयोग करते हुए संबंध बीजगणित में बदल दिया जाता है। इसका महत्व प्रतिनिधित्व योग्य संबंध बीजगणित की परिभाषा में रहता है क्योंकि संबंध बीजगणित 2 के उप-लजेब्रा के लिए कोई भी संबंध बीजगणित समसामयिक हैE किसी समुच्चय पर कुछ तुल्यता संबंध E के लिए। पिछला खंड प्रासंगिक मेटामैथमेटिक्स के बारे में अधिक बताता है।
  4. होने देना G समूह हो। फिर बिजली समुच्चय स्पष्ट बूलियन बीजगणित संचालन के साथ संबंध बीजगणित है, समूह उपसमुच्चय के उत्पाद द्वारा दी गई संरचना, व्युत्क्रम उपसमुच्चय द्वारा विलोम (), और सिंगलटन सबसमुच्चय द्वारा पहचान . संबंध बीजगणित समरूपता एम्बेडिंग है में जो प्रत्येक सबसमुच्चय भेजता है संबंध के लिए . इस समरूपता की छवि सभी सही-अपरिवर्तनीय संबंधों का समुच्चय है G.
  5. यदि समूह योग या गुणन रचना की व्याख्या करता है, तो समूह (गणित)#परिभाषा विलोम की व्याख्या करता है, समूह पहचान की व्याख्या करता है I, और यदि R एक-से-एक पत्राचार है, ताकि R˘•R = R•R˘ = I,[3] तो एल समूह (गणित) के साथ-साथ मोनोइड भी है। 'बी4'-'बी7' समूह सिद्धांत के प्रसिद्ध प्रमेय बन जाते हैं, जिससे 'आरए' समूह सिद्धांत के साथ-साथ बूलियन बीजगणित का उचित विस्तार बन जाता है।

ऐतिहासिक टिप्पणी

ऑगस्टस डी मॉर्गन ने 1860 में आरए की स्थापना की, लेकिन चार्ल्स सैंडर्स पियर्स | सी। एस. पियर्स ने इसे और आगे बढ़ाया और इसकी दार्शनिक घात से मुग्ध हो गए। DeMorgan और Peirce के काम को मुख्य रूप से अर्नस्ट श्रोडर (गणितज्ञ) के विस्तारित और निश्चित रूप में जाना जाता है। अर्नस्ट श्रोडर ने इसे वॉल्यूम में दिया था। उनके वोरलेसुंगेन (1890-1905) में से 3। गणितीय सिद्धांत ने श्रोडर के आरए पर दृढ़ता से आकर्षित किया, लेकिन उन्हें केवल संकेतन के आविष्कारक के रूप में स्वीकार किया। 1912 में, एल्विन कोर्सेल्ट ने साबित किया कि विशेष सूत्र जिसमें क्वांटिफायर को चार गहरे में नेस्टेड किया गया था, उसका कोई आरए समतुल्य नहीं था।[4] इस तथ्य के कारण आरए में दिलचस्पी कम हो गई जब तक कि टार्स्की (1941) ने इसके बारे में लिखना शुरू नहीं किया। उनके छात्रों ने आज तक आरए को विकसित करना जारी रखा है। टार्स्की 1970 के दशक में स्टीवन गिवेंट की मदद से आरए में लौट आए; इस सहयोग के परिणामस्वरूप टार्स्की और गिवंत (1987) द्वारा मोनोग्राफ तैयार किया गया, जो इस विषय के लिए निश्चित संदर्भ था। आरए के इतिहास पर अधिक जानकारी के लिए, मैडक्स (1991, 2006) देखें।

सॉफ्टवेयर

यह भी देखें


फुटनोट्स

  1. Alfred Tarski (1948) "Abstract: Representation Problems for Relation Algebras," Bulletin of the AMS 54: 80.
  2. Chris Brink; Wolfram Kahl; Gunther Schmidt (1997). Relational Methods in Computer Science. Springer. pp. 4 and 8. ISBN 978-3-211-82971-4.
  3. Tarski, A. (1941), p. 87.
  4. Korselt did not publish his finding. It was first published in Leopold Loewenheim (1915) "Über Möglichkeiten im Relativkalkül," Mathematische Annalen 76: 447–470. Translated as "On possibilities in the calculus of relatives" in Jean van Heijenoort, 1967. A Source Book in Mathematical Logic, 1879–1931. Harvard Univ. Press: 228–251.


संदर्भ


बाहरी संबंध