डेडेकिंड डोमेन: Difference between revisions
mNo edit summary |
mNo edit summary |
||
Line 12: | Line 12: | ||
19वीं शताब्दी में उच्च कोटि की [[बीजगणितीय संख्या]]ओं के वलयों (गणित) का उपयोग करके [[बहुपद समीकरण|बहुपद]] [[समीकरणों]] के [[डायोफैंटाइन समीकरण]] में अंतर्दृष्टि प्राप्त करना एक सामान्य तकनीक बन गई। उदाहरण के लिए, एक सकारात्मक [[पूर्णांक]] <math>m</math> को ठीक करें, यह निर्धारित करने के प्रयास में कि किन पूर्णांकों को [[द्विघात रूप]] द्वारा दर्शाया गया है <math>x^2+my^2</math>, इसमें द्विघात रूप का कारक होना स्वाभाविक है <math>(x+\sqrt{-m}y)(x-\sqrt{-m}y)</math>, [[द्विघात क्षेत्र]] के पूर्णांकों के वलय में होने वाला गुणनखंड <math>\mathbb{Q}(\sqrt{-m})</math>। इसी तरह, एक सकारात्मक पूर्णांक <math>n</math> के लिए [[बहुपद]] <math>z^n-y^n</math> (जो फर्मेट समीकरण को हल करने के लिए उपयुक्त है <math>x^n+y^n = z^n</math>) रिंग के ऊपर फैक्टर किया जा सकता है <math>\mathbb{Z}[\zeta_n]</math>, जहाँ <math>\zeta_n</math> एक अभाज्य n-वें मूल हैं। | 19वीं शताब्दी में उच्च कोटि की [[बीजगणितीय संख्या]]ओं के वलयों (गणित) का उपयोग करके [[बहुपद समीकरण|बहुपद]] [[समीकरणों]] के [[डायोफैंटाइन समीकरण]] में अंतर्दृष्टि प्राप्त करना एक सामान्य तकनीक बन गई। उदाहरण के लिए, एक सकारात्मक [[पूर्णांक]] <math>m</math> को ठीक करें, यह निर्धारित करने के प्रयास में कि किन पूर्णांकों को [[द्विघात रूप]] द्वारा दर्शाया गया है <math>x^2+my^2</math>, इसमें द्विघात रूप का कारक होना स्वाभाविक है <math>(x+\sqrt{-m}y)(x-\sqrt{-m}y)</math>, [[द्विघात क्षेत्र]] के पूर्णांकों के वलय में होने वाला गुणनखंड <math>\mathbb{Q}(\sqrt{-m})</math>। इसी तरह, एक सकारात्मक पूर्णांक <math>n</math> के लिए [[बहुपद]] <math>z^n-y^n</math> (जो फर्मेट समीकरण को हल करने के लिए उपयुक्त है <math>x^n+y^n = z^n</math>) रिंग के ऊपर फैक्टर किया जा सकता है <math>\mathbb{Z}[\zeta_n]</math>, जहाँ <math>\zeta_n</math> एक अभाज्य n-वें मूल हैं। | ||
<math>m</math> और <math>n</math> के कुछ छोटे मानों के लिए बीजगणितीय पूर्णांक पीआईडी हैं, और इसे [[पियरे डी फर्मेट]] (<math>m = 1, n = 4</math>) और [[लियोनहार्ड यूलर]] (<math>m = 2,3, n = 3</math>) की प्राचीन सफलताओं की व्याख्या के रूप में देखा जा सकता हैं। इस समय तक किसी दिए गए द्विघात क्षेत्र के सभी [[द्विघात पूर्णांक]] के विलय को निर्धारित करने के लिए प्रक्रिया <math>\mathbb{Q}(\sqrt{D})</math> एक पीआईडी है, जो द्विघात सिद्धांतकारों के लिए अच्छी तरह से जाना जाता था। विशेष रूप से, [[कार्ल फ्रेडरिक गॉस]] ने काल्पनिक द्विघात क्षेत्रों के स्थिति को देखा था: उन्होंने <math>D < 0</math> के नौ मूल्यों को पाया। जिसके लिए पूर्णांकों का वलय एक PID है और यह अनुमान लगाया कि आगे अब कोई मान प्राप्त नहीं किया जा सकता। (गॉस का अनुमान एक सौ साल से भी अधिक समय बाद कर्ट हेगनेर, [[एलन बेकर (गणितज्ञ)]] और [[हेरोल्ड स्टार्क]] द्वारा सिद्ध किया गया था।) हालांकि, यह (केवल) द्विघात रूपों के [[तुल्यता वर्ग|तुल्यता]] [[वर्गों]] की भाषा में समझा गया था, ताकि विशेष रूप से द्विघात रूपों और फ़र्मेट समीकरण के बीच समानता को नहीं समझा जा सके। 1847 में गेब्रियल लैम ने सभी के लिए फर्मेट के अंतिम प्रमेय | <math>m</math> और <math>n</math> के कुछ छोटे मानों के लिए बीजगणितीय पूर्णांक पीआईडी हैं, और इसे [[पियरे डी फर्मेट]] (<math>m = 1, n = 4</math>) और [[लियोनहार्ड यूलर]] (<math>m = 2,3, n = 3</math>) की प्राचीन सफलताओं की व्याख्या के रूप में देखा जा सकता हैं। इस समय तक किसी दिए गए द्विघात क्षेत्र के सभी [[द्विघात पूर्णांक]] के विलय को निर्धारित करने के लिए प्रक्रिया <math>\mathbb{Q}(\sqrt{D})</math> एक पीआईडी है, जो द्विघात सिद्धांतकारों के लिए अच्छी तरह से जाना जाता था। विशेष रूप से, [[कार्ल फ्रेडरिक गॉस]] ने काल्पनिक द्विघात क्षेत्रों के स्थिति को देखा था: उन्होंने <math>D < 0</math> के नौ मूल्यों को पाया। जिसके लिए पूर्णांकों का वलय एक PID है और यह अनुमान लगाया कि आगे अब कोई मान प्राप्त नहीं किया जा सकता। (गॉस का अनुमान एक सौ साल से भी अधिक समय बाद कर्ट हेगनेर, [[एलन बेकर (गणितज्ञ)]] और [[हेरोल्ड स्टार्क]] द्वारा सिद्ध किया गया था।) हालांकि, यह (केवल) द्विघात रूपों के [[तुल्यता वर्ग|तुल्यता]] [[वर्गों]] की भाषा में समझा गया था, ताकि विशेष रूप से द्विघात रूपों और फ़र्मेट समीकरण के बीच समानता को नहीं समझा जा सके। 1847 में गेब्रियल लैम ने सभी के लिए फर्मेट के अंतिम प्रमेय <math>n > 2</math> के समाधान की घोषणा की, अर्थात् फ़र्मेट समीकरण का गैर-शून्य पूर्णांकों में कोई समाधान नहीं है, लेकिन यह पता चला है कि उसका समाधान इस धारणा पर टिका है कि साइक्लोटोमिक रिंग <math>\mathbb{Z}[\zeta_n]</math> एक UFD है। [[गंभीर दु:ख|अर्नस्ट कुमेर]] ने तीन साल पहले दिखाया था <math>n = 23</math> (मानों की पूर्ण परिमित सूची) जिसके लिए <math>\mathbb{Z}[\zeta_n]</math> एक UFD है। उसी समय, कुमेर ने फर्मेट के अंतिम प्रमेय को साबित करने के लिए कम से कम अभाज्य संख्या के घातांक <math>n</math> के एक बड़े वर्ग के लिए शक्तिशाली नए तरीके विकसित किए, जिसे अब हम इस तथ्य के रूप में पहचानते हैं कि वलय <math>\mathbb{Z}[\zeta_n]</math> एक डेडेकाइंड डोमेन है। वास्तव में कुमेर ने आदर्शों के साथ नहीं बल्कि [[आदर्श संख्या|"आदर्श संख्या]][[ओं]]" के साथ काम किया, और एक आधुनिक परिभाषा डेडेकिंड द्वारा दी गई। | ||
20वीं शताब्दी तक, बीजगणित और संख्या सिद्धांतकारों को यह एहसास हो गया था कि पीआईडी होने की स्थिति काफी नाजुक होती है, जबकि डेडेकाइंड डोमेन होने की स्थिति काफी मजबूत होती है। उदाहरण के लिए साधारण पूर्णांकों का वलय एक PID है, लेकिन जैसा कि वलय के ऊपर देखा गया है <math>\mathcal{O}_K</math> एक [[संख्या क्षेत्र]] में बीजगणितीय पूर्णांकों की <math>K</math> पीआईडी होना जरूरी नहीं है। वास्तव में, हालांकि गॉस ने यह भी अनुमान लगाया था कि अपरिमित रूप से अनेक अभाज्य संख्याएँ होती हैं <math>p</math> जैसे कि पूर्णांकों का वलय <math>\mathbb{Q}(\sqrt{p})</math> एक पीआईडी है, {{as of|2016|lc=y}} यह अभी तक ज्ञात नहीं है कि अपरिमित रूप से अनेक संख्या क्षेत्र हैं या नहीं <math>K</math> (मनमानी डिग्री का) ऐसा <math>\mathcal{O}_K</math> एक पीआईडी है। दूसरी ओर, संख्या क्षेत्र में पूर्णांकों का वलय हमेशा डेडेकाइंड डोमेन होता है। | 20वीं शताब्दी तक, बीजगणित और संख्या सिद्धांतकारों को यह एहसास हो गया था कि पीआईडी होने की स्थिति काफी नाजुक होती है, जबकि डेडेकाइंड डोमेन होने की स्थिति काफी मजबूत होती है। उदाहरण के लिए साधारण पूर्णांकों का वलय एक PID है, लेकिन जैसा कि वलय के ऊपर देखा गया है <math>\mathcal{O}_K</math> एक [[संख्या क्षेत्र]] में बीजगणितीय पूर्णांकों की <math>K</math> पीआईडी होना जरूरी नहीं है। वास्तव में, हालांकि गॉस ने यह भी अनुमान लगाया था कि अपरिमित रूप से अनेक अभाज्य संख्याएँ होती हैं <math>p</math> जैसे कि पूर्णांकों का वलय <math>\mathbb{Q}(\sqrt{p})</math> एक पीआईडी है, {{as of|2016|lc=y}} यह अभी तक ज्ञात नहीं है कि अपरिमित रूप से अनेक संख्या क्षेत्र हैं या नहीं <math>K</math> (मनमानी डिग्री का) ऐसा <math>\mathcal{O}_K</math> एक पीआईडी है। दूसरी ओर, संख्या क्षेत्र में पूर्णांकों का वलय हमेशा डेडेकाइंड डोमेन होता है। |
Revision as of 09:12, 16 February 2023
सार बीजगणित में, एक डेडेकिंड डोमेन या डेडेकिंड रिंग, जिसका नाम रिचर्ड डेडेकिंड के नाम पर रखा गया है, एक अभिन्न डोमेन है जिसमें प्रत्येक अशून्य उचित आदर्श कारकों को उदाहरण और गुण प्रमुख आदर्शों के उत्पाद में कारक हैं। यह दिखाया जा सकता है कि कारकों के क्रम तक इस तरह का एक गुणनखंड आवश्यक रूप से अद्वितीय है। डेडेकिंड डोमेन की कम से कम तीन अन्य विशेषताएँ हैं जिन्हें कभी-कभी परिभाषा के रूप में लिया जाता है:
एक क्षेत्र (गणित) एक क्रमविनिमेय वलय है जिसमें कोई गैर-तुच्छ उचित आदर्श नहीं होते हैं, इसलिए कोई भी क्षेत्र एक डेडेकाइंड डोमेन है, हालांकि एक खाली तरीके से। कुछ लेखक इस आवश्यकता को जोड़ते हैं कि डेडेकाइंड डोमेन एक क्षेत्र नहीं होना चाहिए। कई और लेखकों ने डेडेकाइंड डोमेन के लिए प्रमेयों को निहित प्रावधान के साथ बताया है कि उन्हें क्षेत्रों के स्थिति में तुच्छ संशोधनों की आवश्यकता हो सकती है।
परिभाषा का एक तात्कालिक परिणाम यह है कि प्रत्येक प्रमुख आदर्श डोमेन (PID) एक डेडेकाइंड डोमेन है। वास्तव में एक डेडेकाइंड डोमेन एक अद्वितीय गुणनखंडन डोमेन (UFD) है, यदि यह केवल एक PID है।
Algebraic structures |
---|
डेडेकाइंड डोमेन का प्रागितिहास
19वीं शताब्दी में उच्च कोटि की बीजगणितीय संख्याओं के वलयों (गणित) का उपयोग करके बहुपद समीकरणों के डायोफैंटाइन समीकरण में अंतर्दृष्टि प्राप्त करना एक सामान्य तकनीक बन गई। उदाहरण के लिए, एक सकारात्मक पूर्णांक को ठीक करें, यह निर्धारित करने के प्रयास में कि किन पूर्णांकों को द्विघात रूप द्वारा दर्शाया गया है , इसमें द्विघात रूप का कारक होना स्वाभाविक है , द्विघात क्षेत्र के पूर्णांकों के वलय में होने वाला गुणनखंड । इसी तरह, एक सकारात्मक पूर्णांक के लिए बहुपद (जो फर्मेट समीकरण को हल करने के लिए उपयुक्त है ) रिंग के ऊपर फैक्टर किया जा सकता है , जहाँ एक अभाज्य n-वें मूल हैं।
और के कुछ छोटे मानों के लिए बीजगणितीय पूर्णांक पीआईडी हैं, और इसे पियरे डी फर्मेट () और लियोनहार्ड यूलर () की प्राचीन सफलताओं की व्याख्या के रूप में देखा जा सकता हैं। इस समय तक किसी दिए गए द्विघात क्षेत्र के सभी द्विघात पूर्णांक के विलय को निर्धारित करने के लिए प्रक्रिया एक पीआईडी है, जो द्विघात सिद्धांतकारों के लिए अच्छी तरह से जाना जाता था। विशेष रूप से, कार्ल फ्रेडरिक गॉस ने काल्पनिक द्विघात क्षेत्रों के स्थिति को देखा था: उन्होंने के नौ मूल्यों को पाया। जिसके लिए पूर्णांकों का वलय एक PID है और यह अनुमान लगाया कि आगे अब कोई मान प्राप्त नहीं किया जा सकता। (गॉस का अनुमान एक सौ साल से भी अधिक समय बाद कर्ट हेगनेर, एलन बेकर (गणितज्ञ) और हेरोल्ड स्टार्क द्वारा सिद्ध किया गया था।) हालांकि, यह (केवल) द्विघात रूपों के तुल्यता वर्गों की भाषा में समझा गया था, ताकि विशेष रूप से द्विघात रूपों और फ़र्मेट समीकरण के बीच समानता को नहीं समझा जा सके। 1847 में गेब्रियल लैम ने सभी के लिए फर्मेट के अंतिम प्रमेय के समाधान की घोषणा की, अर्थात् फ़र्मेट समीकरण का गैर-शून्य पूर्णांकों में कोई समाधान नहीं है, लेकिन यह पता चला है कि उसका समाधान इस धारणा पर टिका है कि साइक्लोटोमिक रिंग एक UFD है। अर्नस्ट कुमेर ने तीन साल पहले दिखाया था (मानों की पूर्ण परिमित सूची) जिसके लिए एक UFD है। उसी समय, कुमेर ने फर्मेट के अंतिम प्रमेय को साबित करने के लिए कम से कम अभाज्य संख्या के घातांक के एक बड़े वर्ग के लिए शक्तिशाली नए तरीके विकसित किए, जिसे अब हम इस तथ्य के रूप में पहचानते हैं कि वलय एक डेडेकाइंड डोमेन है। वास्तव में कुमेर ने आदर्शों के साथ नहीं बल्कि "आदर्श संख्याओं" के साथ काम किया, और एक आधुनिक परिभाषा डेडेकिंड द्वारा दी गई।
20वीं शताब्दी तक, बीजगणित और संख्या सिद्धांतकारों को यह एहसास हो गया था कि पीआईडी होने की स्थिति काफी नाजुक होती है, जबकि डेडेकाइंड डोमेन होने की स्थिति काफी मजबूत होती है। उदाहरण के लिए साधारण पूर्णांकों का वलय एक PID है, लेकिन जैसा कि वलय के ऊपर देखा गया है एक संख्या क्षेत्र में बीजगणितीय पूर्णांकों की पीआईडी होना जरूरी नहीं है। वास्तव में, हालांकि गॉस ने यह भी अनुमान लगाया था कि अपरिमित रूप से अनेक अभाज्य संख्याएँ होती हैं जैसे कि पूर्णांकों का वलय एक पीआईडी है, as of 2016[update] यह अभी तक ज्ञात नहीं है कि अपरिमित रूप से अनेक संख्या क्षेत्र हैं या नहीं (मनमानी डिग्री का) ऐसा एक पीआईडी है। दूसरी ओर, संख्या क्षेत्र में पूर्णांकों का वलय हमेशा डेडेकाइंड डोमेन होता है।
नाजुक/मजबूत द्विभाजन का एक अन्य उदाहरण यह तथ्य है कि एक डेडेकिंड डोमेन होने के नाते, नोथेरियन डोमेन के बीच, एक स्थानीय संपत्ति है # कम्यूटेटिव रिंग्स के गुण: एक नोएथेरियन डोमेन Dedekind iff हर अधिकतम आदर्श के लिए है का अंगूठी का स्थानीयकरण डेडेकाइंड रिंग है। लेकिन एक स्थानीय रिंग एक डेडेकाइंड रिंग है, अगर यह एक पीआईडी है, अगर यह एक असतत मूल्यांकन रिंग (डीवीआर) है, तो एक ही स्थानीय लक्षण वर्णन पीआईडी के लिए नहीं हो सकता है: बल्कि, कोई कह सकता है कि डेडेकाइंड रिंग की अवधारणा का वैश्वीकरण है एक डीवीआर की।
वैकल्पिक परिभाषाएँ
एक अभिन्न डोमेन के लिए वह एक क्षेत्र नहीं है, निम्नलिखित सभी शर्तें समतुल्य हैं:[1]
- (DD1) प्रत्येक अशून्य उचित आदर्श कारक primes में।
- (डीडी2) नोथेरियन है, और प्रत्येक अधिकतम आदर्श पर स्थानीयकरण एक असतत मूल्यांकन वलय है।
- (DD3) का हर अशून्य भिन्नात्मक आदर्श उलटा है।
- (डीडी4) एक अभिन्न रूप से बंद डोमेन है, क्रुल आयाम एक के साथ नोथेरियन डोमेन (यानी, प्रत्येक गैर-अभाज्य प्रधान आदर्श अधिकतम है)।
- (DD5) किन्हीं दो आदर्शों के लिए और में , में निहित है अगर और केवल अगर विभाजित आदर्शों के रूप में। यानी एक आदर्श मौजूद है ऐसा है कि . इस स्थिति को संतुष्ट करने वाली एकता के साथ एक कम्यूटेटिव रिंग (जरूरी नहीं कि एक डोमेन) को कंटेनमेंट-डिवीजन रिंग (सीडीआर) कहा जाता है।[2]
इस प्रकार एक डेडेकाइंड डोमेन एक ऐसा डोमेन है जो या तो एक क्षेत्र है, या किसी एक को संतुष्ट करता है, और इसलिए (DD1) से (DD5) के सभी पांच। परिभाषा के रूप में इन शर्तों में से कौन सा लेता है इसलिए केवल स्वाद का मामला है। व्यवहार में, इसे सत्यापित करना अक्सर सबसे आसान होता है (DD4)।
क्रुल डोमेन डेडेकाइंड डोमेन का एक उच्च-आयामी एनालॉग है: एक डेडेकाइंड डोमेन जो फ़ील्ड नहीं है, आयाम 1 का क्रुल डोमेन है। इस धारणा का उपयोग डेडेकाइंड डोमेन के विभिन्न लक्षणों का अध्ययन करने के लिए किया जा सकता है। वास्तव में, यह निकोलस बोरबाकी के कम्यूटेटिव बीजगणित में प्रयुक्त डेडेकिंड डोमेन की परिभाषा है।
एक Dedekind डोमेन को समरूप बीजगणित के संदर्भ में भी चित्रित किया जा सकता है: एक अभिन्न डोमेन एक Dedekind डोमेन है अगर और केवल अगर यह एक वंशानुगत रिंग है; यानी, इसके ऊपर एक प्रक्षेपी मॉड्यूल का हर submodule प्रोजेक्टिव है। इसी तरह, एक अभिन्न डोमेन एक Dedekind डोमेन है अगर और केवल अगर इसके ऊपर प्रत्येक विभाज्य मॉड्यूल इंजेक्शन मॉड्यूल है।[3]
डेडेकाइंड डोमेन के कुछ उदाहरण
सभी प्रमुख आदर्श डोमेन और इसलिए सभी असतत वैल्यूएशन रिंग डेडेकिंड डोमेन हैं।
अंगूठी किसी संख्या क्षेत्र में बीजगणितीय पूर्णांकों का K नोथेरियन है, अभिन्न रूप से बंद है, और आयाम एक है: अंतिम संपत्ति को देखने के लिए, निरीक्षण करें कि R के किसी भी गैर-अभाज्य प्रधान आदर्श I के लिए, R/I एक परिमित सेट है, और याद रखें कि एक परिमित अभिन्न डोमेन एक क्षेत्र है; इसलिए (DD4) द्वारा R एक Dedekind डोमेन है। ऊपर के रूप में, इसमें कुमेर और डेडेकिंड द्वारा माने गए सभी उदाहरण शामिल हैं और सामान्य परिभाषा के लिए प्रेरक मामला था, और ये सबसे अधिक अध्ययन किए गए उदाहरणों में से हैं।
डेडेकाइंड रिंग्स का अन्य वर्ग जो तर्कसंगत रूप से समान महत्व का है, ज्यामिति से आता है: मान लीजिए C एक गैर-एकवचन ज्यामितीय रूप से अभिन्न 'एफ़ाइन किस्म #Affine किस्मों' एक फ़ील्ड k पर बीजगणितीय वक्र है। फिर C पर नियमित कार्यों का समन्वय वलय k[C] एक Dedekind डोमेन है। यह केवल ज्यामितीय शब्दों को बीजगणित में अनुवाद करने से काफी हद तक स्पष्ट है: परिभाषा के अनुसार, किसी भी प्रकार की समन्वय की अंगूठी, एक अंतिम रूप से उत्पन्न k-बीजगणित है, इसलिए नोथेरियन; इसके अलावा वक्र का अर्थ आयाम एक है और गैर-एकवचन का अर्थ है (और, पहले आयाम में, के बराबर है) सामान्य, जिसका परिभाषा के अनुसार अभिन्न रूप से बंद होना है।
इन दोनों निर्माणों को निम्नलिखित मूल परिणाम के विशेष मामलों के रूप में देखा जा सकता है:
'प्रमेय': मान लीजिए कि R एक Dedekind डोमेन है जिसका क्षेत्र K भिन्न है। मान लीजिए L, K का एक परिमित डिग्री क्षेत्र विस्तार है और S द्वारा L में R के अभिन्न संवरण को निरूपित करता है। तब S स्वयं एक Dedekind डोमेन है।[4] जब R स्वयं एक PID है, तब इस प्रमेय को लागू करने से हमें PIDs से Dedekind डोमेन बनाने का एक तरीका मिल जाता है। R = 'Z' लेते हुए, यह रचना सटीक रूप से कहती है कि संख्या क्षेत्रों के पूर्णांकों के वलय Dedekind डोमेन हैं। आर = के [टी] लेते हुए, एक उपरोक्त स्थिति को एफ़िन लाइन के शाखित कवरिंग के रूप में नॉनसिंगुलर एफ़िन कर्व्स के रूप में प्राप्त करता है।
ऑस्कर ज़ारिस्की और पियरे-सैमुअल को इस निर्माण के साथ यह पूछने के लिए पर्याप्त रूप से लिया गया था कि क्या प्रत्येक डेडेकिंड डोमेन इससे उत्पन्न होता है; वह है, एक पीआईडी के साथ शुरू करके और एक परिमित डिग्री क्षेत्र विस्तार में अभिन्न संवरण लेना।[5] एल. क्लाबोर्न द्वारा आश्चर्यजनक रूप से सरल नकारात्मक उत्तर दिया गया।[6] यदि स्थिति ऊपर की तरह है, लेकिन K का विस्तार L अनंत डिग्री का बीजगणितीय है, तो यह अभी भी L में R के इंटीग्रल क्लोजर S के लिए डेडेकिंड डोमेन होना संभव है, लेकिन इसकी गारंटी नहीं है। उदाहरण के लिए, फिर से R = 'Z', K = 'Q' लें और अब L को क्षेत्र मान लें सभी बीजगणितीय संख्याओं का। इंटीग्रल क्लोजर रिंग के अलावा और कुछ नहीं है सभी बीजगणितीय पूर्णांकों का। चूंकि एक बीजगणितीय पूर्णांक का वर्गमूल फिर से एक बीजगणितीय पूर्णांक होता है, इसलिए किसी भी शून्येतर गैर-इकाई बीजगणितीय पूर्णांक को अप्रासंगिक तत्वों के परिमित उत्पाद में कारक बनाना संभव नहीं है, जिसका अर्थ है कि नोथेरियन भी नहीं है! सामान्य तौर पर, एक अनंत बीजगणितीय विस्तार में डेडेकिंड डोमेन का अभिन्न समापन एक प्रुफर डोमेन है; यह पता चला है कि बीजगणितीय पूर्णांकों का वलय इससे थोड़ा अधिक विशेष है: यह एक बेज़ाउट डोमेन है।
आंशिक आदर्श और वर्ग समूह
R को अंश क्षेत्र K के साथ एक अभिन्न डोमेन होने दें। एक भिन्नात्मक आदर्श K का एक अशून्य R-सबमॉड्यूल I है जिसके लिए K में एक अशून्य x मौजूद है जैसे कि दो आंशिक आदर्शों I और J को देखते हुए, उनके गुणनफल IJ को सभी परिमित योगों के समुच्चय के रूप में परिभाषित किया जाता है : गुणनफल IJ पुनः एक भिन्नात्मक गुणजावली है। उपरोक्त उत्पाद के साथ संपन्न सभी भिन्नात्मक आदर्शों का सेट Frac(R) एक क्रमविनिमेय अर्धसमूह है और वास्तव में एक मोनोइड है: पहचान तत्व भिन्नात्मक आदर्श R है।
किसी भिन्नात्मक आदर्श I के लिए, भिन्नात्मक गुणजावली को परिभाषित किया जा सकता है
एक तो tautologically है . वास्तव में किसी के पास समानता है अगर और केवल अगर मैं, फ्राक (आर) के मोनोइड के तत्व के रूप में उलटा है। दूसरे शब्दों में, यदि मेरे पास कोई व्युत्क्रम है, तो प्रतिलोम अवश्य होना चाहिए .
एक प्रमुख भिन्नात्मक आदर्श एक रूप है K में कुछ शून्येतर x के लिए। ध्यान दें कि प्रत्येक मुख्य भिन्नात्मक आदर्श व्युत्क्रमणीय है, का व्युत्क्रम है बस होना . हम प्रिंसिपल फ्रैक्शनल आइडियल्स के सेमीग्रुप#स्ट्रक्चर_ऑफ_सेमीग्रुप्स को प्रिंस (आर) द्वारा निरूपित करते हैं।
एक डोमेन आर एक पीआईडी है अगर और केवल अगर हर आंशिक आदर्श प्रमुख है। इस स्थिति में, हमारे पास Frac(R) = Prin(R) = है , दो प्रमुख आंशिक आदर्शों के बाद से और बराबर हैं आर में एक इकाई है।
एक सामान्य डोमेन R के लिए, मुख्य भिन्नात्मक आदर्शों के सबमोनॉइड Prin (R) द्वारा सभी भिन्नात्मक आदर्शों के मोनोइड Frac(R) के भागफल को लेना अर्थपूर्ण है। हालाँकि यह भागफल आमतौर पर केवल एक मोनोइड होता है। वास्तव में यह देखना आसान है कि Frac(R)/Prin(R) में भिन्नात्मक आदर्श I का वर्ग व्युत्क्रमणीय है यदि और केवल यदि I स्वयं व्युत्क्रमणीय है।
अब हम (DD3) की सराहना कर सकते हैं: Dedekind डोमेन में (और केवल Dedekind डोमेन में) प्रत्येक भिन्नात्मक आदर्श व्युत्क्रमणीय होता है। इस प्रकार ये ठीक डोमेन के वर्ग हैं जिसके लिए Frac(R)/Prin(R) एक समूह (गणित) बनाता है, R का आदर्श वर्ग समूह Cl(R) है। यह समूह छोटा है अगर और केवल अगर R एक PID है, इसलिए इसे पीआईडी होने वाले सामान्य डेडेकाइंड डोमेन में बाधा को मापने के रूप में देखा जा सकता है।
हम ध्यान दें कि एक मनमाना डोमेन के लिए पिकार्ड समूह Pic(R) को उल्टे भिन्नात्मक आदर्शों के समूह के रूप में परिभाषित किया जा सकता है Inv(R) modulo प्रमुख भिन्नात्मक आदर्शों का उपसमूह। Dedekind डोमेन के लिए यह निश्चित रूप से आदर्श वर्ग समूह के समान है। हालांकि, डोमेन के एक अधिक सामान्य वर्ग पर, जिसमें नोथेरियन डोमेन और क्रुल डोमेन शामिल हैं, आदर्श वर्ग समूह एक अलग तरीके से बनाया गया है, और एक विहित समरूपता है
- तस्वीर (आर) → सीएल (आर)
जो कि आम तौर पर न तो अंतःक्षेपी है और न ही आच्छादक। यह कार्टियर विभाजक और वील विभाजक के बीच एक विलक्षण बीजगणितीय किस्म के अंतर का एक सजातीय एनालॉग है।
एल. क्लैबॉर्न (क्लाबॉर्न 1966) का एक उल्लेखनीय प्रमेय दावा करता है कि किसी भी एबेलियन समूह जी के लिए, एक डेडेकिंड डोमेन आर मौजूद है जिसका आदर्श वर्ग समूह जी के लिए समूह समरूपता है। बाद में, चार्ल्स लीडहम-ग्रीन|सी.आर. लीधम-ग्रीन ने दिखाया कि इस तरह के आर का निर्माण एक द्विघात क्षेत्र विस्तार (लीधम-ग्रीन 1972) में पीआईडी के अभिन्न समापन के रूप में किया जा सकता है। 1976 में, एम. रोसेन ने दिखाया कि किसी डेडेकिंड डोमेन के वर्ग समूह के रूप में किसी भी गणनीय एबेलियन समूह को कैसे महसूस किया जाए, जो एक दीर्घवृत्तीय वक्र के तर्कसंगत कार्य क्षेत्र का एक सबरिंग है, और अनुमान लगाया कि एक सामान्य एबेलियन के लिए ऐसा अण्डाकार निर्माण संभव होना चाहिए समूह (रोसेन 1976)। रोसेन के अनुमान को 2008 में पी.एल. क्लार्क (क्लार्क 2009)।
इसके विपरीत, बीजगणितीय संख्या सिद्धांत में बुनियादी प्रमेयों में से एक यह दावा करता है कि संख्या क्षेत्र के पूर्णांकों के वलय का वर्ग समूह परिमित है; इसकी प्रमुखता को वर्ग संख्या (संख्या सिद्धांत) कहा जाता है और गॉस से लेकर आज तक कई प्रमुख गणितज्ञों की कड़ी मेहनत के बावजूद यह एक महत्वपूर्ण और बल्कि रहस्यमय अपरिवर्तनीय है।
== एक Dedekind डोमेन == पर सूक्ष्म रूप से उत्पन्न मॉड्यूल
प्रमुख आदर्श डोमेन (पीआईडी) पर सूक्ष्म रूप से उत्पन्न मॉड्यूल के लिए प्रसिद्ध और अत्यधिक उपयोगी संरचना प्रमेय को ध्यान में रखते हुए, डेडेकाइंड डोमेन पर अंतिम रूप से उत्पन्न मॉड्यूल के लिए संबंधित सिद्धांत के लिए पूछना स्वाभाविक है।
आइए हम संक्षिप्त रूप से उत्पन्न मॉड्यूल के स्थिति में संरचना सिद्धांत को संक्षेप में याद करें एक पीआईडी के ऊपर . हम मरोड़ वाले सबमॉड्यूल को परिभाषित करते हैं तत्वों का सेट होना का ऐसा है कि कुछ गैर शून्य के लिए में . तब:
(एम 1) प्रत्येक रूप में चक्रीय मॉड्यूल मरोड़ मॉड्यूल के मॉड्यूल के प्रत्यक्ष योग में विघटित किया जा सकता है कुछ अशून्य आदर्श के लिए का . चीनी अवशेष प्रमेय द्वारा, प्रत्येक आगे फॉर्म के सबमॉड्यूल के प्रत्यक्ष योग में विघटित किया जा सकता है , कहाँ एक प्रधान आदर्श की शक्ति है। यह अपघटन अद्वितीय नहीं है, लेकिन किन्हीं दो अपघटनों की आवश्यकता है
केवल कारकों के क्रम में भिन्न होते हैं।
(M2) मरोड़ सबमॉड्यूल एक सीधा योग है। अर्थात्, एक पूरक सबमॉड्यूल मौजूद है का ऐसा है कि .
(मंदिर) आइसोमॉर्फिक से विशिष्ट रूप से निर्धारित गैर-ऋणात्मक पूर्णांक के लिए . विशेष रूप से, एक अंतिम रूप से उत्पन्न मुक्त मॉड्यूल है।
अब चलो एक स्वेच्छ डेडेकिंड डोमेन पर अंतिम रूप से उत्पन्न मॉड्यूल बनें . तब (M1) और (M2) शब्दशः धारण करते हैं। हालाँकि, यह (M3PID) से अनुसरण करता है कि एक सूक्ष्म रूप से उत्पन्न मरोड़ रहित मॉड्यूल एक पीआईडी पर मुफ़्त है। विशेष रूप से, यह दावा करता है कि सभी भिन्नात्मक आदर्श प्रधान हैं, एक कथन जो कभी भी गलत होता है पीआईडी नहीं है। दूसरे शब्दों में, वर्ग समूह की गैर-तुच्छता कारण (M3PID) विफल होने के लिए। उल्लेखनीय रूप से, एक मनमाना डेडेकाइंड डोमेन पर मरोड़ रहित बारीक रूप से उत्पन्न मॉड्यूल में अतिरिक्त संरचना को वर्ग समूह द्वारा सटीक रूप से नियंत्रित किया जाता है, जैसा कि अब हम समझाते हैं। एक मनमाने ढंग से Dedekind डोमेन के ऊपर एक है
(एम3डीडी) रैंक एक प्रोजेक्टिव मॉड्यूल के प्रत्यक्ष योग के लिए आइसोमोर्फिक है: . इसके अलावा, किसी भी रैंक के लिए एक प्रोजेक्टिव मॉड्यूल , किसी के पास
अगर और केवल अगर
और
रैंक एक प्रोजेक्टिव मॉड्यूल को भिन्नात्मक आदर्शों के साथ पहचाना जा सकता है, और अंतिम स्थिति को फिर से परिभाषित किया जा सकता है
इस प्रकार रैंक का एक सूक्ष्म रूप से उत्पन्न मरोड़ रहित मॉड्यूल के रूप में व्यक्त किया जा सकता है , कहाँ एक रैंक एक प्रोजेक्टिव मॉड्यूल है। के लिए स्टीनिट्ज़ वर्ग ऊपर वर्ग है का में : यह विशिष्ट रूप से निर्धारित है।[7] इसका एक परिणाम है:
प्रमेय: चलो डेडेकाइंड डोमेन हो। तब , कहाँ सूक्ष्म रूप से उत्पन्न प्रक्षेपी के क्रमविनिमेय मोनॉइड का ग्रोथेंडिक समूह है मॉड्यूल।
ये परिणाम 1912 में अर्नेस्ट स्टीनिट्ज़ द्वारा स्थापित किए गए थे।
इस संरचना का एक अतिरिक्त परिणाम, जो पूर्ववर्ती प्रमेय में निहित नहीं है, यह है कि यदि डेडेकिंड डोमेन पर दो प्रोजेक्टिव मॉड्यूल ग्रोथेंडिक समूह में समान वर्ग हैं, तो वे वास्तव में अमूर्त आइसोमोर्फिक हैं।
स्थानीय रूप से डेडेकिंड के छल्ले
अभिन्न डोमेन मौजूद हैं जो स्थानीय रूप से हैं लेकिन विश्व स्तर पर नहीं हैं: डेडेकाइंड: का स्थानीयकरण प्रत्येक अधिकतम आदर्श पर एक डेडेकाइंड रिंग (समतुल्य रूप से, एक डीवीआर) लेकिन है खुद डेडेकाइंड नहीं है। जैसा ऊपर बताया गया है, ऐसी अंगूठी नोथेरियन नहीं हो सकती है। ऐसा लगता है कि इस तरह के छल्लों का पहला उदाहरण 1953 में एन. नाकानो द्वारा बनाया गया था। साहित्य में ऐसे छल्लों को कभी-कभी लगभग डेडेकिंड के छल्ले कहा जाता है।
यह भी देखें
टिप्पणियाँ
- ↑ Milne 2008, Remark 3.25
- ↑ Krasula 2022, Theorem 12
- ↑ Cohn 2003, 2.4. Exercise 9
- ↑ The theorem follows, for instance, from the Krull–Akizuki theorem.
- ↑ Zariski and Samuel, p. 284
- ↑ Claborn 1965, Example 1-9
- ↑ Fröhlich & Taylor (1991) p.95
संदर्भ
- Bourbaki, Nicolas (1972), Commutative Algebra, Addison-Wesley
- Claborn, Luther (1965), "Dedekind domains and rings of quotients", Pacific J. Math., 15: 59–64, doi:10.2140/pjm.1965.15.59
- Claborn, Luther (1966), "Every abelian group is a class group", Pacific J. Math., 18 (2): 219–222, doi:10.2140/pjm.1966.18.219
- Clark, Pete L. (2009), "Elliptic Dedekind domains revisited" (PDF), L'Enseignement Mathématique, 55 (3): 213–225, arXiv:math/0612469, doi:10.4171/lem/55-3-1, S2CID 7461271
- Cohn, Paul M. (2003). Further algebra and applications. Springer. ISBN 1-85233-667-6.
- Fröhlich, A.; Taylor, M.J. (1991), "II. Dedekind domains", Algebraic number theory, Cambridge studies in advanced mathematics, vol. 27, Cambridge University Press, pp. 35–101, ISBN 0-521-36664-X, Zbl 0744.11001
- Gomez-Ramirez, Danny (2015), "Conceptual Blending as a Creative meta-generator of mathematical concepts: Prime Ideals and Dedekind Domains as a blend", In: T.R. Besold, K.U. Kühnberger, M. Schorlemmer, A. Smaill (Eds.) Proceedings of the 4th International Workshop on Computational Creativity, Concept Invention, and General Intelligence (C3GI) PICS, 2[1]
- Krasula, Dominik (2022), "Restricted Minimum Condition in Reduced Commutative Rings", The Mediterranean Journal of Mathematics, 19 (6), arXiv:2201.03921, doi:10.1007/s00009-022-02190-4, S2CID 245853674[2]
- Leedham-Green, C.R. (1972), "The class group of Dedekind domains", Trans. Amer. Math. Soc., 163: 493–500, doi:10.2307/1995734, JSTOR 1995734
- Milne, J.S. (2008), Algebraic Number Theory (v3.00)
- Nakano, Noburu (1953), "Idealtheorie in einem speziellen unendlichen algebraischen Zahlkörper", J. Sci. Hiroshima Univ. Ser. A, 16: 425–439
- Rosen, Michael (1976), "Elliptic curves and Dedekind domains", Proc. Amer. Math. Soc., 57 (2): 197–201, doi:10.2307/2041187, JSTOR 2041187
- Steinitz, E. (1912), "Rechteckige Systeme und Moduln in algebraischen Zahlkörpern", Math. Ann., 71 (3): 328–354, doi:10.1007/BF01456849, S2CID 179177736
- Zariski, Oscar; Samuel, Pierre (1958), Commutative Algebra, Volume I, D. Van Nostrand Company
अग्रिम पठन
- Edwards, Harold M. (1990), Divisor theory, Boston: Birkhäuser Verlag, ISBN 0-8176-3448-7, Zbl 0689.12001
बाहरी संबंध
- "Dedekind ring", Encyclopedia of Mathematics, EMS Press, 2001 [1994]