युग्मन अभिगृहीत: Difference between revisions
(Created page with "{{short description|Concept in axiomatic set theory}} {{no footnotes|date=March 2013}} [[स्वयंसिद्ध सेट सिद्धांत]] और इस...") |
m (Abhishek moved page युग्मन का स्वयंसिद्ध to युग्मन अभिगृहीत without leaving a redirect) |
(No difference)
|
Revision as of 17:12, 15 February 2023
This article includes a list of references, related reading or external links, but its sources remain unclear because it lacks inline citations. (March 2013) (Learn how and when to remove this template message) |
[[स्वयंसिद्ध सेट सिद्धांत]] और इसका उपयोग करने वाले तर्क, गणित और कंप्यूटर विज्ञान की शाखाओं में, युग्मन का स्वयंसिद्ध ज़र्मेलो-फ्रेंकेल सेट सिद्धांत के स्वयंसिद्धों में से एक है। द्वारा पेश किया गया था Zermelo (1908) प्राथमिक सेटों के अपने स्वयंसिद्ध के एक विशेष मामले के रूप में।
औपचारिक वक्तव्य
ज़र्मेलो-फ्रेंकेल स्वयंसिद्धों की औपचारिक भाषा में, स्वयंसिद्ध पढ़ता है:
शब्दों में:
- किसी भी वस्तु ए और किसी भी वस्तु बी को देखते हुए, अस्तित्वगत परिमाणीकरण एक सेट सी जैसे कि, किसी भी वस्तु डी को दिया गया है, डी सी का एक सदस्य है अगर और केवल अगर डी बराबर है (गणित) एक तार्किक संयोजन डी के बराबर है।
या सरल शब्दों में:
- दो वस्तुएँ दी हुई हैं, एक समुच्चय है जिसके सदस्य वास्तव में दी गई दो वस्तुएँ हैं।
परिणाम
जैसा कि उल्लेख किया गया है, स्वयंसिद्ध क्या कह रहा है कि, दो वस्तुओं ए और बी को देखते हुए, हम एक सेट सी पा सकते हैं जिसका सदस्य बिल्कुल ए और बी हैं।
हम विस्तृतता के अभिगृहीत का उपयोग यह दर्शाने के लिए कर सकते हैं कि यह समुच्चय C अद्वितीय है। हम समुच्चय C को A और B का युग्म कहते हैं, और इसे {A,B} निरूपित करते हैं। इस प्रकार स्वयंसिद्ध का सार है:
- किन्हीं भी दो वस्तुओं का जोड़ा होता है।
समुच्चय {A,A} संक्षिप्त रूप में {A} है, जिसे A युक्त सिंगलटन (गणित) कहा जाता है। ध्यान दें कि सिंगलटन जोड़ी का एक विशेष मामला है। एक सिंगलटन का निर्माण करने में सक्षम होना आवश्यक है, उदाहरण के लिए, असीम रूप से अवरोही श्रृंखलाओं के गैर-अस्तित्व को दिखाने के लिए नियमितता के स्वयंसिद्ध से।
पेयरिंग का स्वयंसिद्ध आदेशित जोड़े की परिभाषा के लिए भी अनुमति देता है। किसी वस्तु के लिए और , क्रमित जोड़ी को निम्नलिखित द्वारा परिभाषित किया गया है:
ध्यान दें कि यह परिभाषा शर्त को संतुष्ट करती है
क्रमित tuple|n-tuples को पुनरावर्ती रूप से निम्नानुसार परिभाषित किया जा सकता है:
विकल्प
गैर-स्वतंत्रता
युग्मन के स्वयंसिद्ध को आम तौर पर विवादास्पद माना जाता है, और यह या समकक्ष सेट सिद्धांत के लगभग किसी भी स्वयंसिद्ध में प्रकट होता है। फिर भी, ज़र्मेलो-फ्रेंकेल सेट सिद्धांत के मानक सूत्रीकरण में, दो या दो से अधिक तत्वों के साथ किसी दिए गए सेट पर लागू प्रतिस्थापन के स्वयंसिद्ध स्कीमा से युग्मन का स्वयंसिद्ध अनुसरण करता है, और इस प्रकार इसे कभी-कभी छोड़ दिया जाता है। {{}, {{}}} जैसे दो तत्वों वाले एक सेट का अस्तित्व, या तो खाली सेट के स्वयंसिद्ध और शक्ति सेट के स्वयंसिद्ध या अनंत के स्वयंसिद्ध से निकाला जा सकता है।
कुछ मजबूत ZFC स्वयंसिद्धों की अनुपस्थिति में, युग्मन का स्वयंसिद्ध अभी भी बिना किसी नुकसान के कमजोर रूपों में पेश किया जा सकता है।
कमजोर
जुदाई के स्वयंसिद्ध स्कीमा के मानक रूपों की उपस्थिति में हम युग्मन के स्वयंसिद्ध को इसके कमजोर संस्करण से बदल सकते हैं:
- .
युग्मन के इस कमजोर स्वयंसिद्ध का अर्थ है कि कोई भी वस्तु और किसी सेट के सदस्य हैं . पृथक्करण की अभिगृहीत स्कीमा का उपयोग करके हम उस समुच्चय का निर्माण कर सकते हैं जिसके सदस्य ठीक हों और .
एक अन्य अभिगृहीत जिसका अर्थ रिक्त समुच्चय के अभिगृहीत की उपस्थिति में युग्मन की अभिगृहीत है, संयोजन की अभिगृहीत है
- .
यह के उपयोग से मानक एक से अलग है के बजाय . A के लिए {} और B के लिए x का उपयोग करके, हम C के लिए {x} प्राप्त करते हैं। फिर A के लिए {x} और B के लिए y का उपयोग करते हुए, C के लिए {x, y} प्राप्त करते हैं। कोई भी परिमित बनाने के लिए इस तरह से जारी रह सकता है तय करना। और इसका उपयोग संघ के स्वयंसिद्ध का उपयोग किए बिना सभी आनुवंशिक रूप से परिमित सेट उत्पन्न करने के लिए किया जा सकता है।
मजबूत
साथ में रिक्त समुच्चय का स्वयंसिद्ध और संघ का स्वयंसिद्ध, का स्वयंसिद्ध युग्मन को निम्नलिखित स्कीमा में सामान्यीकृत किया जा सकता है:
वह है:
- वस्तुओं के किसी भी परिमित सेट संख्या को देखते हुए ए1 किसी के जरिएn, एक समुच्चय C है जिसके सदस्य निश्चित रूप से A हैं1 किसी के जरिएn.
यह समुच्चय C विस्तारात्मकता के अभिगृहीत द्वारा फिर से अद्वितीय है, और इसे {A1,...,एn}.
बेशक, हम अपने हाथों में पहले से ही एक (परिमित) सेट के बिना वस्तुओं की एक सीमित संख्या को सख्ती से संदर्भित नहीं कर सकते हैं, जिसमें प्रश्न वाली वस्तुएं हैं। इस प्रकार, यह एक एकल कथन नहीं है, बल्कि एक स्कीमा (तर्क) है, जिसमें प्रत्येक प्राकृतिक संख्या n के लिए एक अलग कथन है।
- मामला n = 1, A = A के साथ युग्मन का स्वयंसिद्ध है1 और बी = ए1.
- मामला n = 2, A = A के साथ युग्मन का स्वयंसिद्ध है1 और बी = ए2.
- मामले n > 2 को कई बार युग्मन के स्वयंसिद्ध और संघ के स्वयंसिद्ध का उपयोग करके सिद्ध किया जा सकता है।
उदाहरण के लिए, मामले n = 3 को साबित करने के लिए, तीन बार जोड़ी बनाने के स्वयंसिद्ध का उपयोग करें, जोड़ी {ए1,ए2}, सिंगलटन {ए3}, और फिर जोड़ी {{A1,A2},{A3}}. संघ का स्वयंसिद्ध तब वांछित परिणाम उत्पन्न करता है, {ए1,ए2,ए3}. हम इस स्कीमा को n = 0 शामिल करने के लिए विस्तारित कर सकते हैं यदि हम उस मामले को खाली सेट के स्वयंसिद्ध के रूप में व्याख्या करते हैं।
इस प्रकार, कोई इसे खाली सेट और युग्मन के सिद्धांतों के स्थान पर एक स्वयंसिद्ध स्कीमा के रूप में उपयोग कर सकता है। आम तौर पर, हालांकि, खाली सेट और जोड़ी को अलग से स्वयंसिद्धों का उपयोग करता है, और फिर इसे एक प्रमेय स्कीमा के रूप में साबित करता है। ध्यान दें कि इसे एक स्वयंसिद्ध स्कीमा के रूप में अपनाने से संघ के स्वयंसिद्ध को प्रतिस्थापित नहीं किया जाएगा, जो अभी भी अन्य स्थितियों के लिए आवश्यक है।
संदर्भ
- Paul Halmos, Naive set theory. Princeton, NJ: D. Van Nostrand Company, 1960. Reprinted by Springer-Verlag, New York, 1974. ISBN 0-387-90092-6 (Springer-Verlag edition).
- Jech, Thomas, 2003. Set Theory: The Third Millennium Edition, Revised and Expanded. Springer. ISBN 3-540-44085-2.
- Kunen, Kenneth, 1980. Set Theory: An Introduction to Independence Proofs. Elsevier. ISBN 0-444-86839-9.
- Zermelo, Ernst (1908), "Untersuchungen über die Grundlagen der Mengenlehre I", Mathematische Annalen, 65 (2): 261–281, doi:10.1007/bf01449999, S2CID 120085563. English translation: Heijenoort, Jean van (1967), "Investigations in the foundations of set theory", From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931, Source Books in the History of the Sciences, Harvard Univ. Press, pp. 199–215, ISBN 978-0-674-32449-7.