नेटवर्क विश्लेषण: Difference between revisions
(Hindi edit) |
|||
Line 35: | Line 35: | ||
== समकक्ष सर्किट == | == समकक्ष सर्किट == | ||
[[Image:circuit equivalence.png|200px | सही]] | [[Image:circuit equivalence.png|200px | सही]] | ||
टवर्क विश्लेषण में एक उपयोगी प्रक्रिया घटकों की संख्या को कम करके नेटवर्क को सरल बनाना है। यह भौतिक घटकों को समान प्रभाव वाले अन्य काल्पनिक घटकों के साथ बदलकर किया जा सकता है। एक विशेष तकनीक सीधे घटकों की संख्या को कम कर सकती है, उदाहरण के लिए श्रृंखला में प्रतिबाधाओं को मिलाकर। दूसरी ओर, यह केवल उस रूप को बदल सकता है जिसमें बाद के ऑपरेशन में घटकों को कम किया जा सकता है। उदाहरण के लिए, नॉर्टन के प्रमेय का उपयोग करके एक वोल्टेज जनरेटर को वर्तमान जनरेटर में बदल सकता है ताकि बाद में समानांतर प्रतिबाधा भार के साथ जनरेटर के आंतरिक प्रतिरोध को संयोजित करने में सक्षम हो सके। | टवर्क विश्लेषण में एक उपयोगी प्रक्रिया घटकों की संख्या को कम करके नेटवर्क को सरल बनाना है। यह भौतिक घटकों को समान प्रभाव वाले अन्य काल्पनिक घटकों के साथ बदलकर किया जा सकता है। एक विशेष तकनीक सीधे घटकों की संख्या को कम कर सकती है, उदाहरण के लिए श्रृंखला में प्रतिबाधाओं को मिलाकर। दूसरी ओर, यह केवल उस रूप को बदल सकता है जिसमें बाद के ऑपरेशन में घटकों को कम किया जा सकता है। उदाहरण के लिए, नॉर्टन के प्रमेय का उपयोग करके एक वोल्टेज जनरेटर को वर्तमान जनरेटर में बदल सकता है ताकि बाद में समानांतर प्रतिबाधा भार के साथ जनरेटर के आंतरिक प्रतिरोध को संयोजित करने में सक्षम हो सके। | ||
Line 52: | Line 52: | ||
=== डेल्टा-वाई परिवर्तन === | === डेल्टा-वाई परिवर्तन === | ||
[[Image:Delta-Star Transformation.svg|right|400px]] | [[Image:Delta-Star Transformation.svg|right|400px]] | ||
Line 79: | Line 77: | ||
=== नेटवर्क नोड उन्मूलन का सामान्य रूप === | === नेटवर्क नोड उन्मूलन का सामान्य रूप === | ||
स्टार-टू-डेल्टा और सीरीज़-रेसिस्टर ट्रांसफॉर्मेशन सामान्य रेसिस्टर नेटवर्क नोड एलिमिनेशन एल्गोरिथम के विशेष मामले हैं। द्वारा जुड़ा हुआ कोई भी नोड <math>N</math> प्रतिरोधक ( <math>R_1</math> .. <math>R_N</math> ) नोड्स '''1''' के लिए। . '''एन''' द्वारा प्रतिस्थापित किया जा सकता है <math>{N \choose 2}</math> शेष को जोड़ने वाले प्रतिरोधक <math>N</math> नोड्स। किन्हीं दो नोड्स के बीच प्रतिरोध <math>x</math> और <math>y</math> द्वारा दिया गया है | स्टार-टू-डेल्टा और सीरीज़-रेसिस्टर ट्रांसफॉर्मेशन सामान्य रेसिस्टर नेटवर्क नोड एलिमिनेशन एल्गोरिथम के विशेष मामले हैं। द्वारा जुड़ा हुआ कोई भी नोड <math>N</math> प्रतिरोधक ( <math>R_1</math> .. <math>R_N</math> ) नोड्स '''1''' के लिए। . '''एन''' द्वारा प्रतिस्थापित किया जा सकता है <math>{N \choose 2}</math> शेष को जोड़ने वाले प्रतिरोधक <math>N</math> नोड्स। किन्हीं दो नोड्स के बीच प्रतिरोध <math>x</math> और <math>y</math> द्वारा दिया गया है | ||
Line 100: | Line 96: | ||
: <math>V_\mathrm{s} = RI_\mathrm{s}\,\!</math> या <math>I_\mathrm{s} = \frac{V_\mathrm{s}}{R}</math> | : <math>V_\mathrm{s} = RI_\mathrm{s}\,\!</math> या <math>I_\mathrm{s} = \frac{V_\mathrm{s}}{R}</math> | ||
* [[:hi:नॉर्टन का प्रमेय|नॉर्टन के प्रमेय में]] कहा गया है कि किसी भी दो-टर्मिनल रैखिक नेटवर्क को एक आदर्श वर्तमान जनरेटर और एक समानांतर प्रतिबाधा में कम किया जा सकता है। | |||
* [[:hi:थेवेनिन का प्रमेय|थेवेनिन के प्रमेय में]] कहा गया है कि किसी भी दो-टर्मिनल रैखिक नेटवर्क को एक आदर्श वोल्टेज जनरेटर और एक श्रृंखला प्रतिबाधा में कम किया जा सकता | |||
* | * | ||
Line 108: | Line 106: | ||
=== श्रृंखला घटकों का वोल्टेज विभाजन === | === श्रृंखला घटकों का वोल्टेज विभाजन === | ||
n प्रतिबाधाओं पर विचार करें जो '''श्रृंखला''' में जुड़े हुए हैं। वोल्टेज <math>V_i</math> किसी भी प्रतिबाधा के पार <math>Z_i</math> है | n प्रतिबाधाओं पर विचार करें जो '''श्रृंखला''' में जुड़े हुए हैं। वोल्टेज <math>V_i</math> किसी भी प्रतिबाधा के पार <math>Z_i</math> है | ||
Line 114: | Line 111: | ||
=== समानांतर घटकों का वर्तमान विभाजन === | === समानांतर घटकों का वर्तमान विभाजन === | ||
n प्रवेशों पर विचार करें जो '''समानांतर''' में जुड़े हुए हैं। द करेंट <math>I_i</math> किसी भी प्रवेश के माध्यम से <math>Y_i</math> है | n प्रवेशों पर विचार करें जो '''समानांतर''' में जुड़े हुए हैं। द करेंट <math>I_i</math> किसी भी प्रवेश के माध्यम से <math>Y_i</math> है | ||
Line 128: | Line 124: | ||
== नोडल विश्लेषण == | == नोडल विश्लेषण == | ||
1. सर्किट में सभी '''नोड्स''' को लेबल करें। संदर्भ के रूप में मनमाने ढंग से किसी भी नोड का चयन करें। | 1. सर्किट में सभी '''नोड्स''' को लेबल करें। संदर्भ के रूप में मनमाने ढंग से किसी भी नोड का चयन करें। | ||
Line 137: | Line 132: | ||
4. समीकरणों की परिणामी प्रणाली को हल करें। | 4. समीकरणों की परिणामी प्रणाली को हल करें। | ||
== | == मेश विश्लेषण == | ||
मेश - एक लूप जिसमें आंतरिक लूप नहीं होता है। | |||
1. सर्किट में "विंडो पैन" की संख्या की गणना करें। प्रत्येक विंडो पेन में एक मेश करंट असाइन करें। | |||
2. हर उस जाली के लिए एक KVL समीकरण लिखिए जिसका करंट अज्ञात है। | |||
2. | |||
3. परिणामी समीकरणों को हल करें | 3. परिणामी समीकरणों को हल करें | ||
Line 289: | Line 282: | ||
==== डीसी विश्लेषण की ग्राफिकल विधि==== | ==== डीसी विश्लेषण की ग्राफिकल विधि==== | ||
कई सर्किट डिजाइनों में, डीसी पूर्वाग्रह एक गैर-रैखिक घटक को एक रोकनेवाला (या संभवतः प्रतिरोधों का एक नेटवर्क) के माध्यम से खिलाया जाता है। चूंकि प्रतिरोधक रैखिक घटक होते हैं, इसलिए गैर-रैखिक डिवाइस के अर्ध-संचालन बिंदु को उसके स्थानांतरण फ़ंक्शन के ग्राफ़ से निर्धारित करना विशेष रूप से आसान होता है। विधि इस प्रकार है: रैखिक नेटवर्क विश्लेषण से आउटपुट ट्रांसफर फ़ंक्शन (जो आउटपुट करंट के विरुद्ध आउटपुट वोल्टेज है) की गणना प्रतिरोधक (ओं) के नेटवर्क और उन्हें चलाने वाले जनरेटर के लिए की जाती है। यह एक सीधी रेखा होगी (जिसे [[:hi:लोड लाइन (इलेक्ट्रॉनिक्स)|लोड लाइन]] कहा जाता है) और इसे आसानी से गैर-रेखीय डिवाइस के ट्रांसफर फ़ंक्शन प्लॉट पर लगाया जा सकता है। वह बिंदु जहां रेखाएं क्रॉस करती हैं, | कई सर्किट डिजाइनों में, डीसी पूर्वाग्रह एक गैर-रैखिक घटक को एक रोकनेवाला (या संभवतः प्रतिरोधों का एक नेटवर्क) के माध्यम से खिलाया जाता है। चूंकि प्रतिरोधक रैखिक घटक होते हैं, इसलिए गैर-रैखिक डिवाइस के अर्ध-संचालन बिंदु को उसके स्थानांतरण फ़ंक्शन के ग्राफ़ से निर्धारित करना विशेष रूप से आसान होता है। विधि इस प्रकार है: रैखिक नेटवर्क विश्लेषण से आउटपुट ट्रांसफर फ़ंक्शन (जो आउटपुट करंट के विरुद्ध आउटपुट वोल्टेज है) की गणना प्रतिरोधक (ओं) के नेटवर्क और उन्हें चलाने वाले जनरेटर के लिए की जाती है। यह एक सीधी रेखा होगी (जिसे [[:hi:लोड लाइन (इलेक्ट्रॉनिक्स)|लोड लाइन]] कहा जाता है) और इसे आसानी से गैर-रेखीय डिवाइस के ट्रांसफर फ़ंक्शन प्लॉट पर लगाया जा सकता है। वह बिंदु जहां रेखाएं क्रॉस करती हैं, स्थिर संचालन बिंदु है। | ||
सबसे आसान व्यावहारिक तरीका है (रैखिक) नेटवर्क ओपन सर्किट वोल्टेज और शॉर्ट सर्किट करंट की गणना करना और इन्हें नॉन-लीनियर डिवाइस के ट्रांसफर फंक्शन पर प्लॉट करना। इन दोनों बिंदुओं को मिलाने वाली सीधी रेखा नेटवर्क का ट्रांसफर फंक्शन है। | |||
वास्तव में, सर्किट का | वास्तव में, सर्किट का डिज़ाइनर उस वर्णित दिशा के विपरीत दिशा में आगे बढ़ेगा। नॉन-लीनियर डिवाइस के लिए मैन्युफैक्चरर्स डेटा शीट में दिए गए प्लॉट से शुरू होकर, डिज़ाइनर वांछित ऑपरेटिंग पॉइंट का चयन करेगा और फिर इसे प्राप्त करने के लिए आवश्यक लीनियर कंपोनेंट वैल्यू की गणना करेगा। | ||
इस पद्धति का उपयोग करना अभी भी संभव है | इस पद्धति का उपयोग करना अभी भी संभव है यदि डिवाइस पक्षपाती है जब इसका पूर्वाग्रह किसी अन्य डिवाइस के माध्यम से होता है जो स्वयं गैर-रैखिक होता है - उदाहरण के लिए एक डायोड। हालांकि इस मामले में, डिवाइस पर नेटवर्क ट्रांसफर फ़ंक्शन का प्लॉट पक्षपाती होने के कारण अब यह एक सीधी रेखा नहीं होगी और इसके परिणामस्वरूप ऐसा करना अधिक कठिन है। | ||
==== छोटा सिग्नल समकक्ष सर्किट ==== | ==== छोटा सिग्नल समकक्ष सर्किट ==== | ||
{{main|Small signal model}} | {{main|Small signal model}} | ||
इस | इस पद्धति का उपयोग किया जा सकता है जहां एक नेटवर्क में इनपुट और आउटपुट सिग्नल का विचलन गैर-रैखिक उपकरणों के हस्तांतरण फ़ंक्शन के काफी रैखिक हिस्से के भीतर रहता है, या फिर इतना छोटा होता है कि स्थानांतरण फ़ंक्शन के वक्र को रैखिक माना जा सकता है। इन विशिष्ट स्थितियों के एक सेट के तहत, गैर-रैखिक डिवाइस को समकक्ष रैखिक नेटवर्क द्वारा दर्शाया जा सकता है। यह याद रखना चाहिए कि यह समतुल्य सर्किट पूरी तरह से काल्पनिक है और केवल छोटे सिग्नल विचलन के लिए मान्य है। यह डिवाइस के डीसी (DC) बायसिंग के लिए पूरी तरह से अनुपयुक्त है। | ||
दो- | एक साधारण दो-टर्मिनल डिवाइस के लिए, छोटा सिग्नल समकक्ष सर्किट दो से अधिक घटक नहीं हो सकता है। ऑपरेटिंग बिंदु पर v/i वक्र के ढलान के बराबर प्रतिरोध (जिसे गतिशील प्रतिरोध कहा जाता है), और वक्र के स्पर्शरेखा। एक जनरेटर, क्योंकि यह स्पर्शरेखा, सामान्य रूप से, मूल से नहीं गुजरेगी। अधिक टर्मिनलों के साथ, अधिक जटिल समकक्ष सर्किट की आवश्यकता होती है। | ||
[[ | ट्रांजिस्टर निर्माताओं के बीच छोटे सिग्नल समकक्ष सर्किट को निर्दिष्ट करने का एक लोकप्रिय रूप दो-पोर्ट नेटवर्क पैरामीटर का उपयोग करना है जिसे [[:hi:द्वि-प्रद्वार जालक्रम|[एच] पैरामीटर]] कहा जाता है। ये [z] मापदंडों के साथ चार मापदंडों का एक मैट्रिक्स हैं लेकिन [h] मापदंडों के मामले में वे प्रतिबाधा, प्रवेश, वर्तमान लाभ और वोल्टेज लाभ का एक संकर मिश्रण हैं। इस मॉडल में तीन टर्मिनल ट्रांजिस्टर को दो पोर्ट नेटवर्क माना जाता है, इसका एक टर्मिनल दोनों बंदरगाहों के लिए सामान्य है। [एच] पैरामीटर आम टर्मिनल के रूप में चुने जाने के आधार पर काफी भिन्न होते हैं। ट्रांजिस्टर के लिए सबसे महत्वपूर्ण पैरामीटर आम एमिटर कॉन्फ़िगरेशन में आमतौर पर फॉरवर्ड करंट गेन, h <sub>21</sub> है। इसे डेटा शीट्स पर h <sub>fe</sub> नामित किया गया है। | ||
दो-पोर्ट मापदंडों के संदर्भ में छोटा सिग्नल समतुल्य सर्किट आश्रित जनरेटर की अवधारणा की ओर जाता है। अर्थात्, वोल्टेज या करंट जनरेटर का मान सर्किट में कहीं और वोल्टेज या करंट पर रैखिक रूप से निर्भर करता है। उदाहरण के लिए [z] पैरामीटर मॉडल निर्भर वोल्टेज जनरेटर की ओर जाता है जैसा कि इस आरेख में दिखाया गया है; | |||
[[चित्र:Z-equivalent_two_port.png|link=https://hi.wikipedia.org/wiki/%E0%A4%9A%E0%A4%BF%E0%A4%A4%E0%A5%8D%E0%A4%B0:Z-equivalent_two_port.png|none|thumb|400x400px|[जेड] पैरामीटर समकक्ष सर्किट आश्रित वोल्टेज जनरेटर दिखा रहा है]] | |||
दो-पोर्ट पैरामीटर समकक्ष सर्किट में हमेशा एक दूसरे के आश्रित जनरेटर होंगे। यह [h] पैरामीटर के साथ-साथ [z] और किसी भी अन्य प्रकार पर लागू होता है। बड़े रैखिक नेटवर्क विश्लेषण में समीकरण विकसित करते समय इन निर्भरताओं को संरक्षित किया जाना चाहिए। | |||
==== टुकड़े टुकड़े रैखिक विधि ==== | ==== टुकड़े टुकड़े रैखिक विधि ==== | ||
इस | इस पद्धति में, गैर-रेखीय उपकरण के स्थानांतरण कार्य को क्षेत्रों में विभाजित किया जाता है। इनमें से प्रत्येक क्षेत्र एक सीधी रेखा द्वारा अनुमानित है। इस प्रकार, स्थानांतरण फ़ंक्शन एक विशेष बिंदु तक रैखिक होगा जहां एक असंतुलन होगा। इस बिंदु के बाद स्थानांतरण फ़ंक्शन फिर से रैखिक होगा लेकिन एक अलग कोणीय के साथ। | ||
एक | इस पद्धति का एक प्रसिद्ध अनुप्रयोग एक pn जंक्शन डायोड के स्थानांतरण फ़ंक्शन का अनुमान है। इस (नॉन-लीनियर) सेक्शन में सबसे ऊपर एक आदर्श डायोड का ट्रांसफर फंक्शन दिया गया है। हालांकि, नेटवर्क विश्लेषण में इस सूत्र का शायद ही कभी उपयोग किया जाता है, इसके बजाय एक टुकड़े-टुकड़े सन्निकटन का उपयोग किया जा रहा है। यह देखा जा सकता है कि वोल्टेज गिरने पर डायोड करंट तेजी से -I <sub>o</sub> तक कम हो जाता है। अधिकांश उद्देश्यों के लिए यह धारा इतनी छोटी है कि इसे अनदेखा किया जा सकता है। बढ़ते वोल्टेज के साथ, करंट तेजी से बढ़ता है। डायोड को घातीय वक्र के घुटने तक एक खुले सर्किट के रूप में तैयार किया जाता है, फिर इस बिंदु को अर्धचालक सामग्री के [[:hi:थोक प्रतिरोध|थोक प्रतिरोध]] के बराबर प्रतिरोधी के रूप में पीछे छोड़ दिया जाता है। | ||
संक्रमण बिंदु वोल्टेज के लिए आमतौर पर स्वीकृत मान सिलिकॉन उपकरणों के लिए 0.7V और जर्मेनियम उपकरणों के लिए 0.3V हैं। डायोड का एक और भी सरल मॉडल, जिसे कभी-कभी स्विचिंग अनुप्रयोगों में उपयोग किया जाता है, फॉरवर्ड वोल्टेज के लिए शॉर्ट सर्किट और रिवर्स वोल्टेज के लिए ओपन सर्किट है। | |||
लगभग स्थिर 0.7V वाले फॉरवर्ड बायस्ड पीएन जंक्शन का मॉडल भी एम्पलीफायर डिजाइन में ट्रांजिस्टर बेस-एमिटर जंक्शन वोल्टेज के लिए एक बहुत उपयोग किया जाने वाला है। | |||
टुकड़े-टुकड़े की विधि छोटी सिग्नल विधि के समान है, उस रैखिक नेटवर्क विश्लेषण तकनीकों को केवल तभी लागू किया जा सकता है जब सिग्नल कुछ सीमाओं के भीतर रहता है। यदि संकेत एक असंततता बिंदु को पार करता है तो मॉडल अब रैखिक विश्लेषण उद्देश्यों के लिए मान्य नहीं है। छोटे सिग्नल पर मॉडल का लाभ होता है, हालांकि, यह सिग्नल और डीसी पूर्वाग्रह पर समान रूप से लागू होता है। इसलिए इन दोनों का एक ही संचालन में विश्लेषण किया जा सकता है और यह रैखिक रूप से सुपरइम्पोजेबल होगा। | |||
=== समय-भिन्न घटक === | |||
खिक विश्लेषण में, नेटवर्क के घटकों को अपरिवर्तनीय माना जाता है, लेकिन कुछ सर्किटों में यह लागू नहीं होता है, जैसे स्वीप ऑसिलेटर, [[:hi:वोल्टेज नियंत्रित एम्पलीफायर|वोल्टेज नियंत्रित एम्पलीफायर]], और चर [[:hi:इलेक्ट्रॉनिक फिल्टर|तुल्यकारक]] । कई परिस्थितियों में घटक मूल्य में परिवर्तन आवधिक होता है। उदाहरण के लिए, एक आवधिक संकेत से उत्साहित एक गैर-रेखीय घटक को समय-समय पर भिन्न ''रैखिक'' घटक के रूप में दर्शाया जा सकता है। [[:hi:सिडनी डार्लिंगटन|सिडनी डार्लिंगटन]] ने ऐसे आवधिक समय भिन्न सर्किटों का विश्लेषण करने की एक विधि का खुलासा किया। उन्होंने कैनोनिकल सर्किट फॉर्म विकसित किए जो [[:hi:रोनाल्ड एम. फोस्टर|रोनाल्ड एम। फोस्टर]] और [[:hi:विल्हेम काउरे|विल्हेम कॉयर]] के विहित रूपों के अनुरूप हैं जो रैखिक सर्किट का विश्लेषण करने के लिए उपयोग किए जाते हैं।<ref>{{Ref patent | |||
=== समय- | |||
|country=US | |country=US | ||
|number=3265973 | |number=3265973 | ||
Line 379: | Line 324: | ||
}} | }} | ||
</ref> | </ref> | ||
==See also== | ==See also== |
Revision as of 16:04, 6 May 2022
एक नेटवर्क, इलेक्ट्रिकल इंजीनियरिंग और इलेक्ट्रॉनिक्स के संदर्भ में, परस्पर जुड़े घटकों का एक संग्रह है। नेटवर्क विश्लेषण सभी नेटवर्क घटकों के माध्यम से वोल्टेज और धाराओं को खोजने की प्रक्रिया है। इन मूल्यों की गणना के लिए कई तकनीकें हैं। हालांकि, अधिकांश भाग के लिए, तकनीक रैखिक घटकों को मानती है। सिवाय जहां कहा गया है, इस आलेख में वर्णित विधियां केवल रैखिक नेटवर्क विश्लेषण पर लागू होती हैं।
परिभाषाएँ
अवयव | दो या दो से अधिक टर्मिनलों वाला एक उपकरण जिसमें या जिसमें से करंट प्रवाहित हो सकता है। |
नोड | एक बिंदु जिस पर दो से अधिक घटकों के टर्मिनल जुड़ते हैं। पर्याप्त शून्य प्रतिरोध वाले कंडक्टर को विश्लेषण के उद्देश्य के लिए एक नोड माना जाता है। |
डाली | दो नोड्स में शामिल होने वाले घटक। |
जाल | एक नेटवर्क के भीतर शाखाओं का एक समूह एक पूर्ण लूप बनाने के लिए जुड़ गया जैसे कि इसके अंदर कोई अन्य लूप नहीं है। |
पत्तन | दो टर्मिनल जहां एक में करंट दूसरे के बाहर करंट के समान होता है। |
सर्किट | एक जनरेटर के एक टर्मिनल से लोड घटक के माध्यम से एक करंट और दूसरे टर्मिनल में वापस। एक सर्किट, इस अर्थ में, एक बंदरगाह नेटवर्क है और विश्लेषण करने के लिए एक छोटा मामला है। यदि किसी अन्य सर्किट से कोई संबंध है तो एक गैर-तुच्छ नेटवर्क बनाया गया है और कम से कम दो पोर्ट मौजूद होने चाहिए। अक्सर, "सर्किट" और "नेटवर्क" को एक दूसरे के स्थान पर उपयोग किया जाता है, लेकिन कई विश्लेषक "नेटवर्क" को आदर्श घटकों से युक्त एक आदर्श मॉडल के रूप में सुरक्षित रखते हैं। [1] |
स्थानांतरण प्रकार्य | दो बंदरगाहों के बीच धाराओं और/या वोल्टेज का संबंध। अक्सर, एक इनपुट पोर्ट और एक आउटपुट पोर्ट पर चर्चा की जाती है और ट्रांसफर फ़ंक्शन को लाभ या क्षीणन के रूप में वर्णित किया जाता है। |
घटक स्थानांतरण समारोह | दो-टर्मिनल घटक (यानी एक-पोर्ट घटक) के लिए, करंट और वोल्टेज को इनपुट और आउटपुट के रूप में लिया जाता है और ट्रांसफर फ़ंक्शन में प्रतिबाधा या प्रवेश की इकाइयाँ होंगी (यह आमतौर पर मनमानी सुविधा का मामला है चाहे वोल्टेज या करंट हो इनपुट माना जाता है)। एक तीन (या अधिक) टर्मिनल घटक में प्रभावी रूप से दो (या अधिक) पोर्ट होते हैं और स्थानांतरण फ़ंक्शन को एकल प्रतिबाधा के रूप में व्यक्त नहीं किया जा सकता है। सामान्य दृष्टिकोण स्थानांतरण फ़ंक्शन को मापदंडों के मैट्रिक्स के रूप में व्यक्त करना है। ये पैरामीटर प्रतिबाधा हो सकते हैं, लेकिन बड़ी संख्या में अन्य दृष्टिकोण हैं ( दो-पोर्ट नेटवर्क देखें)। |
समकक्ष सर्किट
टवर्क विश्लेषण में एक उपयोगी प्रक्रिया घटकों की संख्या को कम करके नेटवर्क को सरल बनाना है। यह भौतिक घटकों को समान प्रभाव वाले अन्य काल्पनिक घटकों के साथ बदलकर किया जा सकता है। एक विशेष तकनीक सीधे घटकों की संख्या को कम कर सकती है, उदाहरण के लिए श्रृंखला में प्रतिबाधाओं को मिलाकर। दूसरी ओर, यह केवल उस रूप को बदल सकता है जिसमें बाद के ऑपरेशन में घटकों को कम किया जा सकता है। उदाहरण के लिए, नॉर्टन के प्रमेय का उपयोग करके एक वोल्टेज जनरेटर को वर्तमान जनरेटर में बदल सकता है ताकि बाद में समानांतर प्रतिबाधा भार के साथ जनरेटर के आंतरिक प्रतिरोध को संयोजित करने में सक्षम हो सके।
एक प्रतिरोधक सर्किट एक सर्किट होता है जिसमें केवल प्रतिरोधक, आदर्श वर्तमान स्रोत और आदर्श वोल्टेज स्रोत होते हैं। यदि स्रोत स्थिर ( DC ) स्रोत हैं, तो परिणाम एक DC परिपथ है । एक सर्किट के विश्लेषण में सर्किट में मौजूद वोल्टेज और धाराओं को हल करना शामिल है। यहां उल्लिखित समाधान सिद्धांत एसी सर्किट के चरण विश्लेषण पर भी लागू होते हैं।
दो सर्किट को टर्मिनलों की एक जोड़ी के संबंध में समतुल्य कहा जाता है यदि एक नेटवर्क के लिए टर्मिनलों के माध्यम से वोल्टेज और टर्मिनलों के माध्यम से करंट का संबंध दूसरे नेटवर्क के टर्मिनलों पर वोल्टेज और करंट के समान होता है।
अगर तात्पर्य के सभी (वास्तविक) मूल्यों के लिए , तो टर्मिनलों ab और xy के संबंध में, सर्किट 1 और सर्किट 2 समतुल्य हैं।
उपरोक्त एक-पोर्ट नेटवर्क के लिए पर्याप्त परिभाषा है। एक से अधिक पोर्ट के लिए, यह परिभाषित किया जाना चाहिए कि संबंधित पोर्ट के सभी जोड़े के बीच की धाराओं और वोल्टेज में समान संबंध होना चाहिए। उदाहरण के लिए, स्टार और डेल्टा नेटवर्क प्रभावी रूप से तीन पोर्ट नेटवर्क हैं और इसलिए उनकी तुल्यता को पूरी तरह से निर्दिष्ट करने के लिए एक साथ तीन समीकरणों की आवश्यकता होती है।
श्रृंखला में और समानांतर में प्रतिबाधा
प्रतिबाधाओं के कुछ दो टर्मिनल नेटवर्क को अंततः श्रृंखला में प्रतिबाधाओं के क्रमिक अनुप्रयोगों या समानांतर में प्रतिबाधाओं द्वारा एकल प्रतिबाधा में कम किया जा सकता है।
श्रृंखला में प्रतिबाधा: समानांतर में प्रतिबाधा: समानांतर में केवल दो बाधाओं के लिए उपरोक्त सरलीकृत:
डेल्टा-वाई परिवर्तन
दो से अधिक टर्मिनलों के साथ प्रतिबाधा के एक नेटवर्क को एकल प्रतिबाधा समकक्ष सर्किट में कम नहीं किया जा सकता है। एक n-टर्मिनल नेटवर्क, सर्वोत्तम रूप से, n प्रतिबाधाओं (सबसे खराब n C 2 ) तक कम किया जा सकता है। तीन टर्मिनल नेटवर्क के लिए, तीन बाधाओं को तीन नोड डेल्टा (Δ) नेटवर्क या चार नोड स्टार (वाई) नेटवर्क के रूप में व्यक्त किया जा सकता है। ये दो नेटवर्क समतुल्य हैं और उनके बीच के परिवर्तन नीचे दिए गए हैं। नोड्स की मनमानी संख्या वाले एक सामान्य नेटवर्क को केवल श्रृंखला और समानांतर संयोजनों का उपयोग करके न्यूनतम संख्या में प्रतिबाधाओं तक कम नहीं किया जा सकता है। सामान्य तौर पर, Y-Δ और Δ-Y रूपांतरणों का भी उपयोग किया जाना चाहिए। कुछ नेटवर्कों के लिए Y-Δ के स्टार-पॉलीगॉन रूपांतरणों के विस्तार की भी आवश्यकता हो सकती है।
तुल्यता के लिए, टर्मिनलों की किसी भी जोड़ी के बीच प्रतिबाधा दोनों नेटवर्क के लिए समान होनी चाहिए, जिसके परिणामस्वरूप तीन समकालिक समीकरणों का एक सेट होता है। नीचे दिए गए समीकरणों को प्रतिरोध के रूप में व्यक्त किया जाता है, लेकिन समान रूप से प्रतिबाधा के साथ सामान्य मामले पर लागू होता है।
डेल्टा-टू-स्टार परिवर्तन समीकरण
स्टार-टू-डेल्टा परिवर्तन समीकरण
नेटवर्क नोड उन्मूलन का सामान्य रूप
स्टार-टू-डेल्टा और सीरीज़-रेसिस्टर ट्रांसफॉर्मेशन सामान्य रेसिस्टर नेटवर्क नोड एलिमिनेशन एल्गोरिथम के विशेष मामले हैं। द्वारा जुड़ा हुआ कोई भी नोड प्रतिरोधक ( .. ) नोड्स 1 के लिए। . एन द्वारा प्रतिस्थापित किया जा सकता है शेष को जोड़ने वाले प्रतिरोधक नोड्स। किन्हीं दो नोड्स के बीच प्रतिरोध और द्वारा दिया गया है
एक स्टार-टू-डेल्टा के लिए ( ) यह कम हो जाता है:
एक श्रृंखला में कमी के लिए ( ) यह कम हो जाता है:
लटकने वाले रोकनेवाला के लिए ( ) इसके परिणामस्वरूप रोकनेवाला समाप्त हो जाता है क्योंकि .
स्रोत परिवर्तन
एक आंतरिक प्रतिबाधा (यानी गैर-आदर्श जनरेटर) के साथ एक जनरेटर को एक आदर्श वोल्टेज जनरेटर या एक आदर्श वर्तमान जनरेटर प्लस प्रतिबाधा के रूप में दर्शाया जा सकता है। ये दो रूप समतुल्य हैं और रूपांतरण नीचे दिए गए हैं। यदि दो नेटवर्क ab टर्मिनलों के बराबर हैं, तो V और I दोनों नेटवर्क के लिए समान होना चाहिए। इस प्रकार,
- या
- नॉर्टन के प्रमेय में कहा गया है कि किसी भी दो-टर्मिनल रैखिक नेटवर्क को एक आदर्श वर्तमान जनरेटर और एक समानांतर प्रतिबाधा में कम किया जा सकता है।
- थेवेनिन के प्रमेय में कहा गया है कि किसी भी दो-टर्मिनल रैखिक नेटवर्क को एक आदर्श वोल्टेज जनरेटर और एक श्रृंखला प्रतिबाधा में कम किया जा सकता
सरल नेटवर्क
अधिक व्यवस्थित दृष्टिकोणों को लागू करने की आवश्यकता के बिना कुछ बहुत ही सरल नेटवर्क का विश्लेषण किया जा सकता है।
श्रृंखला घटकों का वोल्टेज विभाजन
n प्रतिबाधाओं पर विचार करें जो श्रृंखला में जुड़े हुए हैं। वोल्टेज किसी भी प्रतिबाधा के पार है
समानांतर घटकों का वर्तमान विभाजन
n प्रवेशों पर विचार करें जो समानांतर में जुड़े हुए हैं। द करेंट किसी भी प्रवेश के माध्यम से है
?
विशेष मामला: दो समानांतर घटकों का वर्तमान विभाजन
नोडल विश्लेषण
1. सर्किट में सभी नोड्स को लेबल करें। संदर्भ के रूप में मनमाने ढंग से किसी भी नोड का चयन करें।
2. प्रत्येक शेष नोड से संदर्भ में वोल्टेज चर परिभाषित करें। इन वोल्टेज चर को संदर्भ नोड के संबंध में वोल्टेज बढ़ने के रूप में परिभाषित किया जाना चाहिए।
3. संदर्भ को छोड़कर प्रत्येक नोड के लिए KCL समीकरण लिखें।
4. समीकरणों की परिणामी प्रणाली को हल करें।
मेश विश्लेषण
मेश - एक लूप जिसमें आंतरिक लूप नहीं होता है।
1. सर्किट में "विंडो पैन" की संख्या की गणना करें। प्रत्येक विंडो पेन में एक मेश करंट असाइन करें।
2. हर उस जाली के लिए एक KVL समीकरण लिखिए जिसका करंट अज्ञात है।
3. परिणामी समीकरणों को हल करें
सुपरपोजिशन
इस पद्धति में, बदले में प्रत्येक जनरेटर के प्रभाव की गणना की जाती है। एक के अलावा अन्य सभी जनरेटर को हटा दिया जाता है और या तो वोल्टेज जनरेटर के मामले में शॉर्ट-सर्किट किया जाता है या करंट जनरेटर के मामले में ओपन-सर्किट किया जाता है। किसी विशेष शाखा के माध्यम से कुल वर्तमान या कुल वोल्टेज की गणना सभी व्यक्तिगत धाराओं या वोल्टेज को जोड़कर की जाती है।
इस पद्धति के लिए एक अंतर्निहित धारणा है कि कुल धारा या वोल्टेज इसके भागों का एक रैखिक सुपरपोजिशन है। इसलिए, गैर-रैखिक घटक मौजूद होने पर विधि का उपयोग नहीं किया जा सकता है। [2] रेखीय परिपथों में भी तत्वों द्वारा खपत की गई कुल शक्ति का पता लगाने के लिए शक्तियों के सुपरपोजिशन का उपयोग नहीं किया जा सकता है। कुल वोल्टेज या करंट के वर्ग के अनुसार शक्ति भिन्न होती है और योग का वर्ग आमतौर पर वर्गों के योग के बराबर नहीं होता है। एक तत्व में कुल शक्ति को वोल्टेज और वर्तमान में स्वतंत्र रूप से सुपरपोजिशन लागू करके और फिर कुल वोल्टेज और वर्तमान से शक्ति की गणना करके पाया जा सकता है।
विधि का चुनाव
विधि का चुनाव [3] कुछ हद तक स्वाद का विषय है। यदि नेटवर्क विशेष रूप से सरल है या केवल एक विशिष्ट धारा या वोल्टेज की आवश्यकता है तो कुछ सरल समकक्ष सर्किटों के तदर्थ अनुप्रयोग अधिक व्यवस्थित तरीकों के बिना उत्तर दे सकते हैं।
- नोडल विश्लेषण: वोल्टेज चर की संख्या, और इसलिए हल करने के लिए एक साथ समीकरण, नोड्स की संख्या घटा एक के बराबर होती है। संदर्भ नोड से जुड़ा प्रत्येक वोल्टेज स्रोत अज्ञात और समीकरणों की संख्या को एक से कम कर देता है।
- मेष विश्लेषण: वर्तमान चर की संख्या, और इसलिए हल करने के लिए एक साथ समीकरण, मेश की संख्या के बराबर है। जाल में प्रत्येक वर्तमान स्रोत अज्ञात की संख्या को एक से कम कर देता है। मेष विश्लेषण का उपयोग केवल उन नेटवर्कों के साथ किया जा सकता है जिन्हें एक प्लानर नेटवर्क के रूप में तैयार किया जा सकता है, अर्थात बिना क्रॉसिंग घटकों के।[4]
- सुपरपोजिशन: संभवतः सबसे अवधारणात्मक रूप से सरल तरीका है, लेकिन तेजी से बड़ी संख्या में समीकरणों और गन्दा प्रतिबाधा संयोजनों की ओर जाता है क्योंकि नेटवर्क बड़ा हो जाता है।
- प्रभावी मध्यम अनुमान: यादृच्छिक प्रतिरोधों के उच्च घनत्व वाले नेटवर्क के लिए, प्रत्येक व्यक्तिगत तत्व के लिए एक सटीक समाधान अव्यावहारिक या असंभव हो सकता है। इसके बजाय, प्रभावी प्रतिरोध और वर्तमान वितरण गुणों को ग्राफ उपायों और नेटवर्क के ज्यामितीय गुणों के संदर्भ में तैयार किया जा सकता है।[5]
स्थानांतरण प्रकार्य
एक ट्रांसफर फ़ंक्शन एक नेटवर्क के इनपुट और आउटपुट के बीच संबंध को व्यक्त करता है। प्रतिरोधक नेटवर्क के लिए, यह हमेशा एक साधारण वास्तविक संख्या या एक व्यंजक होगा जो एक वास्तविक संख्या तक उबलता है। प्रतिरोधक नेटवर्क एक साथ बीजीय समीकरणों की एक प्रणाली द्वारा दर्शाए जाते हैं। हालांकि, रैखिक नेटवर्क के सामान्य मामले में, नेटवर्क को एक साथ रैखिक अंतर समीकरणों की एक प्रणाली द्वारा दर्शाया जाता है। नेटवर्क विश्लेषण में, सीधे अंतर समीकरणों का उपयोग करने के बजाय, पहले उन पर लाप्लास परिवर्तन करना और फिर परिणाम को लाप्लास पैरामीटर s के रूप में व्यक्त करना सामान्य अभ्यास है, जो सामान्य रूप से जटिल है। इसे एस-डोमेन में काम करने के रूप में वर्णित किया गया है। समीकरणों के साथ सीधे काम करना समय (या टी) डोमेन में काम करने के रूप में वर्णित किया जाएगा क्योंकि परिणाम समय बदलती मात्रा के रूप में व्यक्त किए जाएंगे। लाप्लास रूपांतरण एस-डोमेन और टी-डोमेन के बीच रूपांतरण की गणितीय विधि है।
यह दृष्टिकोण नियंत्रण सिद्धांत में मानक है और सिस्टम की स्थिरता का निर्धारण करने के लिए उपयोगी है, उदाहरण के लिए, फीडबैक के साथ एम्पलीफायर में।
दो टर्मिनल घटक हस्तांतरण कार्य
दो टर्मिनल घटकों के लिए स्थानांतरण फ़ंक्शन, या अधिक सामान्यतः गैर-रैखिक तत्वों के लिए, संवैधानिक समीकरण, डिवाइस के वर्तमान इनपुट और इसके पार परिणामी वोल्टेज के बीच का संबंध है। स्थानांतरण समारोह, Z(s), इस प्रकार प्रतिबाधा की इकाइयाँ होंगी - ओह। विद्युत नेटवर्क में पाए जाने वाले तीन निष्क्रिय घटकों के लिए, स्थानांतरण कार्य हैं;
अवरोध | |
प्रारंभ करनेवाला | |
संधारित्र |
एक नेटवर्क के लिए जिसमें केवल स्थिर एसी सिग्नल लागू होते हैं, s को jω से बदल दिया जाता है और ac नेटवर्क सिद्धांत परिणाम से अधिक परिचित मान होते हैं।
अवरोध | |
प्रारंभ करनेवाला | |
संधारित्र |
अंत में, एक नेटवर्क के लिए जिसमें केवल स्थिर dc लागू होता है, s को शून्य से बदल दिया जाता है और dc नेटवर्क सिद्धांत लागू होता है।
अवरोध | |
प्रारंभ करनेवाला | |
संधारित्र |
दो पोर्ट नेटवर्क ट्रांसफर फ़ंक्शन =
स्थानांतरण कार्य, सामान्य तौर पर, नियंत्रण सिद्धांत में प्रतीक एच (एस) दिए जाते हैं। आमतौर पर इलेक्ट्रॉनिक्स में, ट्रांसफर फ़ंक्शन को आउटपुट वोल्टेज के इनपुट वोल्टेज के अनुपात के रूप में परिभाषित किया जाता है और प्रतीक ए (एस), या अधिक सामान्यतः दिया जाता है (क्योंकि विश्लेषण हमेशा साइन वेव प्रतिक्रिया के संदर्भ में किया जाता है), A (jω), इसलिए वह;
संदर्भ के आधार पर ए क्षीणन, या प्रवर्धन के लिए खड़ा है। सामान्य तौर पर, यह jω का एक जटिल कार्य होगा, जिसे नेटवर्क में बाधाओं और उनके व्यक्तिगत हस्तांतरण कार्यों के विश्लेषण से प्राप्त किया जा सकता है। कभी-कभी विश्लेषक केवल लाभ के परिमाण में रुचि रखता है, न कि चरण कोण में। इस मामले में सम्मिश्र संख्याओं को स्थानांतरण फ़ंक्शन से समाप्त किया जा सकता है और इसे तब लिखा जा सकता है;
दो पोर्ट पैरामीटर
दो-पोर्ट नेटवर्क की अवधारणा विश्लेषण के लिए ब्लैक बॉक्स दृष्टिकोण के रूप में नेटवर्क विश्लेषण में उपयोगी हो सकती है। एक बड़े नेटवर्क में दो-पोर्ट नेटवर्क के व्यवहार को आंतरिक संरचना के बारे में कुछ भी बताए बिना पूरी तरह से चित्रित किया जा सकता है। हालाँकि, ऐसा करने के लिए ऊपर वर्णित केवल A(jω) की तुलना में अधिक जानकारी होना आवश्यक है। यह दिखाया जा सकता है कि दो-पोर्ट नेटवर्क को पूरी तरह से चिह्नित करने के लिए ऐसे चार मापदंडों की आवश्यकता होती है। ये फॉरवर्ड ट्रांसफर फ़ंक्शन, इनपुट प्रतिबाधा, रिवर्स ट्रांसफर फ़ंक्शन (यानी, आउटपुट पर वोल्टेज लागू होने पर इनपुट पर दिखाई देने वाला वोल्टेज) और आउटपुट प्रतिबाधा हो सकता है। कई अन्य हैं (पूरी सूची के लिए मुख्य लेख देखें), इनमें से एक सभी चार मापदंडों को प्रतिबाधा के रूप में व्यक्त करता है। चार मापदंडों को मैट्रिक्स के रूप में व्यक्त करना सामान्य है;
मैट्रिक्स को एक प्रतिनिधि तत्व के लिए संक्षिप्त किया जा सकता है;
या केवल
ये अवधारणाएं दो से अधिक बंदरगाहों के नेटवर्क तक विस्तारित होने में सक्षम हैं। हालांकि, यह वास्तविकता में शायद ही कभी किया जाता है, क्योंकि कई व्यावहारिक मामलों में, बंदरगाहों को या तो विशुद्ध रूप से इनपुट या विशुद्ध रूप से आउटपुट माना जाता है। यदि रिवर्स डायरेक्शन ट्रांसफर फ़ंक्शन को अनदेखा किया जाता है, तो एक मल्टी-पोर्ट नेटवर्क को हमेशा कई टू-पोर्ट नेटवर्क में विघटित किया जा सकता है।
वितरित घटक
जहां एक नेटवर्क असतत घटकों से बना होता है, दो-पोर्ट नेटवर्क का उपयोग करके विश्लेषण पसंद का विषय है, आवश्यक नहीं है। नेटवर्क को हमेशा वैकल्पिक रूप से उसके व्यक्तिगत घटक हस्तांतरण कार्यों के संदर्भ में विश्लेषण किया जा सकता है। हालांकि, अगर किसी नेटवर्क में वितरित घटक होते हैं, जैसे कि ट्रांसमिशन लाइन के मामले में, तो अलग-अलग घटकों के संदर्भ में विश्लेषण करना संभव नहीं है क्योंकि वे मौजूद नहीं हैं। इसके लिए सबसे आम तरीका है कि लाइन को दो-पोर्ट नेटवर्क के रूप में मॉडल किया जाए और दो-पोर्ट मापदंडों (या उनके समकक्ष कुछ) का उपयोग करके इसे चिह्नित किया जाए। इस तकनीक का एक अन्य उदाहरण उच्च आवृत्ति ट्रांजिस्टर में आधार क्षेत्र को पार करने वाले वाहकों को मॉडलिंग कर रहा है। आधार क्षेत्र को ढेलेदार घटकों के बजाय वितरित प्रतिरोध और समाई के रूप में तैयार किया जाना चाहिए।
छवि विश्लेषण =
ट्रांसमिशन लाइन और कुछ प्रकार के फ़िल्टर डिज़ाइन उनके स्थानांतरण मापदंडों को निर्धारित करने के लिए छवि पद्धति का उपयोग करते हैं। इस पद्धति में, समान नेटवर्कों की अनंत लंबी कैस्केड कनेक्टेड श्रृंखला के व्यवहार पर विचार किया जाता है। इनपुट और आउटपुट प्रतिबाधा और आगे और रिवर्स ट्रांसमिशन फ़ंक्शंस की गणना इस असीम लंबी श्रृंखला के लिए की जाती है। यद्यपि इस प्रकार प्राप्त सैद्धांतिक मूल्यों को व्यवहार में कभी भी ठीक से महसूस नहीं किया जा सकता है, कई मामलों में वे एक परिमित श्रृंखला के व्यवहार के लिए बहुत अच्छे सन्निकटन के रूप में काम करते हैं, जब तक कि यह बहुत छोटा न हो।
गैर-रैखिक नेटवर्क
अधिकांश इलेक्ट्रॉनिक डिजाइन, वास्तव में, गैर-रैखिक हैं। बहुत कम ऐसे हैं जिनमें कुछ अर्धचालक उपकरण शामिल नहीं हैं। ये हमेशा गैर-रैखिक होते हैं, एक आदर्श अर्धचालक पीएन जंक्शन का स्थानांतरण कार्य बहुत ही गैर-रैखिक संबंध द्वारा दिया जाता है;
कहाँ पे;
- i और v तात्कालिक धारा और वोल्टेज हैं।
- I o एक मनमाना पैरामीटर है जिसे रिवर्स लीकेज करंट कहा जाता है जिसका मूल्य डिवाइस के निर्माण पर निर्भर करता है।
- VT तापमान के आनुपातिक एक पैरामीटर है जिसे थर्मल वोल्टेज कहा जाता है और कमरे के तापमान पर लगभग 25 एमवी के बराबर होता है।
ऐसे कई अन्य तरीके हैं जिनसे एक नेटवर्क में गैर-रैखिकता प्रकट हो सकती है। गैर-रैखिक घटक मौजूद होने पर रैखिक सुपरपोजिशन का उपयोग करने वाली सभी विधियां विफल हो जाएंगी। सर्किट के प्रकार और विश्लेषक जो जानकारी प्राप्त करना चाहता है, उसके आधार पर गैर-रैखिकता से निपटने के लिए कई विकल्प हैं।
संवैधानिक समीकरण
उपरोक्त डायोड समीकरण सामान्य रूप के एक तत्व संवैधानिक समीकरण का एक उदाहरण है,
इसे एक गैर-रैखिक अवरोधक के रूप में माना जा सकता है। गैर-रैखिक प्रेरक और कैपेसिटर के लिए संगत संवैधानिक समीकरण क्रमशः हैं;
जहाँ f कोई मनमाना फलन है, संचित चुंबकीय फ्लक्स है और q संचित आवेश है।
अस्तित्व, विशिष्टता और स्थिरता
गैर-रैखिक विश्लेषण में एक महत्वपूर्ण विचार विशिष्टता का प्रश्न है। रैखिक घटकों से बने नेटवर्क के लिए हमेशा एक, और केवल एक, सीमा स्थितियों के दिए गए सेट के लिए अद्वितीय समाधान होगा। गैर-रैखिक सर्किट में हमेशा ऐसा नहीं होता है। उदाहरण के लिए, एक रेखीय रोकनेवाला जिस पर एक निश्चित धारा लगाई जाती है, उसके पार वोल्टेज के लिए केवल एक ही समाधान होता है। दूसरी ओर, गैर-रैखिक सुरंग डायोड में किसी दिए गए वर्तमान के लिए वोल्टेज के लिए तीन समाधान होते हैं। यही है, डायोड के माध्यम से वर्तमान के लिए एक विशेष समाधान अद्वितीय नहीं है, अन्य भी हो सकते हैं, समान रूप से मान्य हैं। कुछ मामलों में समाधान बिल्कुल नहीं हो सकता है: समाधान के अस्तित्व के प्रश्न पर विचार किया जाना चाहिए।
एक अन्य महत्वपूर्ण विचार स्थिरता का प्रश्न है। एक विशेष समाधान मौजूद हो सकता है, लेकिन यह स्थिर नहीं हो सकता है, थोड़ी सी भी उत्तेजना पर उस बिंदु से तेजी से प्रस्थान कर सकता है। यह दिखाया जा सकता है कि एक नेटवर्क जो सभी स्थितियों के लिए बिल्कुल स्थिर है, उसके पास शर्तों के प्रत्येक सेट के लिए एक और केवल एक समाधान होना चाहिए। [6]
तरीके
स्विचिंग नेटवर्क का बूलियन विश्लेषण
एक स्विचिंग डिवाइस वह है जहां दो विपरीत राज्यों का उत्पादन करने के लिए गैर-रैखिकता का उपयोग किया जाता है। डिजिटल सर्किट में सीएमओएस डिवाइस, उदाहरण के लिए, उनका आउटपुट या तो सकारात्मक या नकारात्मक आपूर्ति रेल से जुड़ा होता है और जब डिवाइस स्विच कर रहा होता है तो क्षणिक अवधि के अलावा बीच में कुछ भी नहीं पाया जाता है। यहां गैर-रैखिकता को चरम होने के लिए डिज़ाइन किया गया है, और विश्लेषक उस तथ्य का लाभ उठा सकता है। बूलियन स्थिरांक "0" और "1" के लिए दो राज्यों ("चालू"/"बंद", "सकारात्मक"/"नकारात्मक" या जो भी राज्यों का उपयोग किया जा रहा है) निर्दिष्ट करके बूलियन बीजगणित का उपयोग करके इस प्रकार के नेटवर्क का विश्लेषण किया जा सकता है।
इस विश्लेषण में, डिवाइस की स्थिति और बूलियन मान को निर्दिष्ट नाममात्र की स्थिति के बीच किसी भी मामूली विसंगति के साथ, इस विश्लेषण में ग्राहकों को अनदेखा किया जाता है। उदाहरण के लिए, बूलियन "1" को +5V की स्थिति में असाइन किया जा सकता है। डिवाइस का आउटपुट +4.5V हो सकता है लेकिन विश्लेषक अभी भी इसे बूलियन "1" मानता है। डिवाइस निर्माता आमतौर पर अपने डेटा शीट में मानों की एक श्रृंखला निर्दिष्ट करेंगे जिन्हें अपरिभाषित माना जाना चाहिए (यानी परिणाम अप्रत्याशित होगा)।
विश्लेषक के लिए ग्राहक पूरी तरह से रुचिकर नहीं हैं। स्विचिंग की अधिकतम दर एक राज्य से दूसरे राज्य में संक्रमण की गति से निर्धारित होती है। विश्लेषक के लिए खुशी की बात है, कई उपकरणों के लिए अधिकांश संक्रमण डिवाइस ट्रांसफर फ़ंक्शन के रैखिक भाग में होता है और कम से कम अनुमानित उत्तर प्राप्त करने के लिए रैखिक विश्लेषण लागू किया जा सकता है।
दो से अधिक राज्यों वाले बूलियन बीजगणित को प्राप्त करना गणितीय रूप से संभव है। इलेक्ट्रॉनिक्स में इनके लिए बहुत अधिक उपयोग नहीं मिला है, हालांकि तीन-राज्य उपकरण आम तौर पर आम हैं।
पूर्वाग्रह और संकेत विश्लेषण का पृथक्करण
इस तकनीक का उपयोग वहां किया जाता है जहां सर्किट का संचालन अनिवार्य रूप से रैखिक होता है, लेकिन इसे लागू करने के लिए उपयोग किए जाने वाले उपकरण गैर-रैखिक होते हैं। एक ट्रांजिस्टर एम्पलीफायर इस तरह के नेटवर्क का एक उदाहरण है। इस तकनीक का सार विश्लेषण को दो भागों में विभाजित करना है। सबसे पहले, कुछ गैर-रैखिक विधि का उपयोग करके डीसी पूर्वाग्रहों का विश्लेषण किया जाता है। यह सर्किट के मौन संचालन बिंदु को स्थापित करता है। दूसरे, सर्किट की छोटी सिग्नल विशेषताओं का विश्लेषण रैखिक नेटवर्क विश्लेषण का उपयोग करके किया जाता है। इन दोनों चरणों के लिए उपयोग की जा सकने वाली विधियों के उदाहरण नीचे दिए गए हैं।
डीसी विश्लेषण की ग्राफिकल विधि
कई सर्किट डिजाइनों में, डीसी पूर्वाग्रह एक गैर-रैखिक घटक को एक रोकनेवाला (या संभवतः प्रतिरोधों का एक नेटवर्क) के माध्यम से खिलाया जाता है। चूंकि प्रतिरोधक रैखिक घटक होते हैं, इसलिए गैर-रैखिक डिवाइस के अर्ध-संचालन बिंदु को उसके स्थानांतरण फ़ंक्शन के ग्राफ़ से निर्धारित करना विशेष रूप से आसान होता है। विधि इस प्रकार है: रैखिक नेटवर्क विश्लेषण से आउटपुट ट्रांसफर फ़ंक्शन (जो आउटपुट करंट के विरुद्ध आउटपुट वोल्टेज है) की गणना प्रतिरोधक (ओं) के नेटवर्क और उन्हें चलाने वाले जनरेटर के लिए की जाती है। यह एक सीधी रेखा होगी (जिसे लोड लाइन कहा जाता है) और इसे आसानी से गैर-रेखीय डिवाइस के ट्रांसफर फ़ंक्शन प्लॉट पर लगाया जा सकता है। वह बिंदु जहां रेखाएं क्रॉस करती हैं, स्थिर संचालन बिंदु है।
सबसे आसान व्यावहारिक तरीका है (रैखिक) नेटवर्क ओपन सर्किट वोल्टेज और शॉर्ट सर्किट करंट की गणना करना और इन्हें नॉन-लीनियर डिवाइस के ट्रांसफर फंक्शन पर प्लॉट करना। इन दोनों बिंदुओं को मिलाने वाली सीधी रेखा नेटवर्क का ट्रांसफर फंक्शन है।
वास्तव में, सर्किट का डिज़ाइनर उस वर्णित दिशा के विपरीत दिशा में आगे बढ़ेगा। नॉन-लीनियर डिवाइस के लिए मैन्युफैक्चरर्स डेटा शीट में दिए गए प्लॉट से शुरू होकर, डिज़ाइनर वांछित ऑपरेटिंग पॉइंट का चयन करेगा और फिर इसे प्राप्त करने के लिए आवश्यक लीनियर कंपोनेंट वैल्यू की गणना करेगा।
इस पद्धति का उपयोग करना अभी भी संभव है यदि डिवाइस पक्षपाती है जब इसका पूर्वाग्रह किसी अन्य डिवाइस के माध्यम से होता है जो स्वयं गैर-रैखिक होता है - उदाहरण के लिए एक डायोड। हालांकि इस मामले में, डिवाइस पर नेटवर्क ट्रांसफर फ़ंक्शन का प्लॉट पक्षपाती होने के कारण अब यह एक सीधी रेखा नहीं होगी और इसके परिणामस्वरूप ऐसा करना अधिक कठिन है।
छोटा सिग्नल समकक्ष सर्किट
इस पद्धति का उपयोग किया जा सकता है जहां एक नेटवर्क में इनपुट और आउटपुट सिग्नल का विचलन गैर-रैखिक उपकरणों के हस्तांतरण फ़ंक्शन के काफी रैखिक हिस्से के भीतर रहता है, या फिर इतना छोटा होता है कि स्थानांतरण फ़ंक्शन के वक्र को रैखिक माना जा सकता है। इन विशिष्ट स्थितियों के एक सेट के तहत, गैर-रैखिक डिवाइस को समकक्ष रैखिक नेटवर्क द्वारा दर्शाया जा सकता है। यह याद रखना चाहिए कि यह समतुल्य सर्किट पूरी तरह से काल्पनिक है और केवल छोटे सिग्नल विचलन के लिए मान्य है। यह डिवाइस के डीसी (DC) बायसिंग के लिए पूरी तरह से अनुपयुक्त है।
एक साधारण दो-टर्मिनल डिवाइस के लिए, छोटा सिग्नल समकक्ष सर्किट दो से अधिक घटक नहीं हो सकता है। ऑपरेटिंग बिंदु पर v/i वक्र के ढलान के बराबर प्रतिरोध (जिसे गतिशील प्रतिरोध कहा जाता है), और वक्र के स्पर्शरेखा। एक जनरेटर, क्योंकि यह स्पर्शरेखा, सामान्य रूप से, मूल से नहीं गुजरेगी। अधिक टर्मिनलों के साथ, अधिक जटिल समकक्ष सर्किट की आवश्यकता होती है।
ट्रांजिस्टर निर्माताओं के बीच छोटे सिग्नल समकक्ष सर्किट को निर्दिष्ट करने का एक लोकप्रिय रूप दो-पोर्ट नेटवर्क पैरामीटर का उपयोग करना है जिसे [एच] पैरामीटर कहा जाता है। ये [z] मापदंडों के साथ चार मापदंडों का एक मैट्रिक्स हैं लेकिन [h] मापदंडों के मामले में वे प्रतिबाधा, प्रवेश, वर्तमान लाभ और वोल्टेज लाभ का एक संकर मिश्रण हैं। इस मॉडल में तीन टर्मिनल ट्रांजिस्टर को दो पोर्ट नेटवर्क माना जाता है, इसका एक टर्मिनल दोनों बंदरगाहों के लिए सामान्य है। [एच] पैरामीटर आम टर्मिनल के रूप में चुने जाने के आधार पर काफी भिन्न होते हैं। ट्रांजिस्टर के लिए सबसे महत्वपूर्ण पैरामीटर आम एमिटर कॉन्फ़िगरेशन में आमतौर पर फॉरवर्ड करंट गेन, h 21 है। इसे डेटा शीट्स पर h fe नामित किया गया है।
दो-पोर्ट मापदंडों के संदर्भ में छोटा सिग्नल समतुल्य सर्किट आश्रित जनरेटर की अवधारणा की ओर जाता है। अर्थात्, वोल्टेज या करंट जनरेटर का मान सर्किट में कहीं और वोल्टेज या करंट पर रैखिक रूप से निर्भर करता है। उदाहरण के लिए [z] पैरामीटर मॉडल निर्भर वोल्टेज जनरेटर की ओर जाता है जैसा कि इस आरेख में दिखाया गया है; link=https://hi.wikipedia.org/wiki/%E0%A4%9A%E0%A4%BF%E0%A4%A4%E0%A5%8D%E0%A4%B0:Z-equivalent_two_port.png|none|thumb|400x400px|[जेड] पैरामीटर समकक्ष सर्किट आश्रित वोल्टेज जनरेटर दिखा रहा है दो-पोर्ट पैरामीटर समकक्ष सर्किट में हमेशा एक दूसरे के आश्रित जनरेटर होंगे। यह [h] पैरामीटर के साथ-साथ [z] और किसी भी अन्य प्रकार पर लागू होता है। बड़े रैखिक नेटवर्क विश्लेषण में समीकरण विकसित करते समय इन निर्भरताओं को संरक्षित किया जाना चाहिए।
टुकड़े टुकड़े रैखिक विधि
इस पद्धति में, गैर-रेखीय उपकरण के स्थानांतरण कार्य को क्षेत्रों में विभाजित किया जाता है। इनमें से प्रत्येक क्षेत्र एक सीधी रेखा द्वारा अनुमानित है। इस प्रकार, स्थानांतरण फ़ंक्शन एक विशेष बिंदु तक रैखिक होगा जहां एक असंतुलन होगा। इस बिंदु के बाद स्थानांतरण फ़ंक्शन फिर से रैखिक होगा लेकिन एक अलग कोणीय के साथ।
इस पद्धति का एक प्रसिद्ध अनुप्रयोग एक pn जंक्शन डायोड के स्थानांतरण फ़ंक्शन का अनुमान है। इस (नॉन-लीनियर) सेक्शन में सबसे ऊपर एक आदर्श डायोड का ट्रांसफर फंक्शन दिया गया है। हालांकि, नेटवर्क विश्लेषण में इस सूत्र का शायद ही कभी उपयोग किया जाता है, इसके बजाय एक टुकड़े-टुकड़े सन्निकटन का उपयोग किया जा रहा है। यह देखा जा सकता है कि वोल्टेज गिरने पर डायोड करंट तेजी से -I o तक कम हो जाता है। अधिकांश उद्देश्यों के लिए यह धारा इतनी छोटी है कि इसे अनदेखा किया जा सकता है। बढ़ते वोल्टेज के साथ, करंट तेजी से बढ़ता है। डायोड को घातीय वक्र के घुटने तक एक खुले सर्किट के रूप में तैयार किया जाता है, फिर इस बिंदु को अर्धचालक सामग्री के थोक प्रतिरोध के बराबर प्रतिरोधी के रूप में पीछे छोड़ दिया जाता है।
संक्रमण बिंदु वोल्टेज के लिए आमतौर पर स्वीकृत मान सिलिकॉन उपकरणों के लिए 0.7V और जर्मेनियम उपकरणों के लिए 0.3V हैं। डायोड का एक और भी सरल मॉडल, जिसे कभी-कभी स्विचिंग अनुप्रयोगों में उपयोग किया जाता है, फॉरवर्ड वोल्टेज के लिए शॉर्ट सर्किट और रिवर्स वोल्टेज के लिए ओपन सर्किट है।
लगभग स्थिर 0.7V वाले फॉरवर्ड बायस्ड पीएन जंक्शन का मॉडल भी एम्पलीफायर डिजाइन में ट्रांजिस्टर बेस-एमिटर जंक्शन वोल्टेज के लिए एक बहुत उपयोग किया जाने वाला है।
टुकड़े-टुकड़े की विधि छोटी सिग्नल विधि के समान है, उस रैखिक नेटवर्क विश्लेषण तकनीकों को केवल तभी लागू किया जा सकता है जब सिग्नल कुछ सीमाओं के भीतर रहता है। यदि संकेत एक असंततता बिंदु को पार करता है तो मॉडल अब रैखिक विश्लेषण उद्देश्यों के लिए मान्य नहीं है। छोटे सिग्नल पर मॉडल का लाभ होता है, हालांकि, यह सिग्नल और डीसी पूर्वाग्रह पर समान रूप से लागू होता है। इसलिए इन दोनों का एक ही संचालन में विश्लेषण किया जा सकता है और यह रैखिक रूप से सुपरइम्पोजेबल होगा।
समय-भिन्न घटक
खिक विश्लेषण में, नेटवर्क के घटकों को अपरिवर्तनीय माना जाता है, लेकिन कुछ सर्किटों में यह लागू नहीं होता है, जैसे स्वीप ऑसिलेटर, वोल्टेज नियंत्रित एम्पलीफायर, और चर तुल्यकारक । कई परिस्थितियों में घटक मूल्य में परिवर्तन आवधिक होता है। उदाहरण के लिए, एक आवधिक संकेत से उत्साहित एक गैर-रेखीय घटक को समय-समय पर भिन्न रैखिक घटक के रूप में दर्शाया जा सकता है। सिडनी डार्लिंगटन ने ऐसे आवधिक समय भिन्न सर्किटों का विश्लेषण करने की एक विधि का खुलासा किया। उन्होंने कैनोनिकल सर्किट फॉर्म विकसित किए जो रोनाल्ड एम। फोस्टर और विल्हेम कॉयर के विहित रूपों के अनुरूप हैं जो रैखिक सर्किट का विश्लेषण करने के लिए उपयोग किए जाते हैं।[7]
See also
References
- ↑ Belevitch V (May 1962). "Summary of the history of circuit theory". Proceedings of the IRE. 50 (5): 849. doi:10.1109/JRPROC.1962.288301. cites "IRE Standards on Circuits: Definitions of Terms for Linear Passive Reciprocal Time Invariant Networks, 1960". Proceedings of the IRE. 48 (9): 1609. September 1960. doi:10.1109/JRPROC.1960.287676.to justify this definition. Sidney Darlington Darlington S (1984). "A history of network synthesis and filter theory for circuits composed of resistors, inductors, and capacitors". IEEE Trans. Circuits and Systems. 31 (1): 4. doi:10.1109/TCS.1984.1085415. follows Belevitch but notes there are now also many colloquial uses of "network".
- ↑ Wai-Kai Chen, Circuit Analysis and Feedback Amplifier Theory, p. 6-14, CRC Press, 2005 ISBN 1420037277.
- ↑ Nilsson, J W, Riedel, S A (2007). Electric Circuits (8th ed.). Pearson Prentice Hall. pp. 112–113. ISBN 978-0-13-198925-2.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - ↑ Nilsson, J W, Riedel, S A (2007). Electric Circuits (8th ed.). Pearson Prentice Hall. p. 94. ISBN 978-0-13-198925-2.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - ↑ Kumar, Ankush; Vidhyadhiraja, N. S.; Kulkarni, G. U . (2017). "Current distribution in conducting nanowire networks". Journal of Applied Physics. 122 (4): 045101. Bibcode:2017JAP...122d5101K. doi:10.1063/1.4985792.
- ↑ Ljiljana TrajkoviQ, "नॉनलाइनियर सर्किट", द इलेक्ट्रिकल इंजीनियरिंग हैंडबुक (एड: वाई-काई चेन), पीपी। 79-81, अकादमिक प्रेस, 2005 ISBN 0-12-170960-4
- ↑ US patent 3265973, Sidney Darlington, Irwin W. Sandberg, "Synthesis of two-port networks having periodically time-varying elements", issued 1966-08-09
External links
- Circuit Analysis Techniques — includes node/mesh analysis, superposition, and thevenin/norton transformation