पूर्णतया अवयव: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 2: Line 2:


== परिभाषा ==
== परिभाषा ==
औपचारिक रूप से, चलो {{nowrap|(''S'', •)}} एक समुच्चय S है जिसमें एक बंद बाइनरी ऑपरेशन • ([[मैग्मा (बीजगणित)]] के रूप में जाना जाता है) हैं। 'शून्य अवयव' एक ऐसा तत्व z है, जो S, {{nowrap|1=''z'' • ''s'' = ''s'' • ''z'' = ''z''}} में सभी s के लिए है। इस धारणा को बाएँ शून्य की धारणाओं में परिष्कृत किया जा सकता है, जहाँ किसी को केवल {{nowrap|1=''z'' • ''s'' = ''z''}}, और दाएँ शून्य उसकी आवश्यकता होती है, जहाँ {{nowrap|1=''s'' • ''z'' = ''z''}} है।<ref name=kkm/>
औपचारिक रूप से, चलो {{nowrap|(''S'', •)}} एक समुच्चय S है जिसमें एक बंद बाइनरी ऑपरेशन • ([[मैग्मा (बीजगणित)]] के रूप में जाना जाता है) हैं। 'शून्य तत्व' एक ऐसा तत्व z है, जो S, {{nowrap|1=''z'' • ''s'' = ''s'' • ''z'' = ''z''}} में सभी s के लिए है। इस धारणा को बाएँ शून्य की धारणाओं में परिष्कृत किया जा सकता है, जहाँ किसी को केवल {{nowrap|1=''z'' • ''s'' = ''z''}}, और दाएँ शून्य उसकी आवश्यकता होती है, जहाँ {{nowrap|1=''s'' • ''z'' = ''z''}} है।<ref name=kkm/>


शोषक करने वाले तत्व विशेष रूप से उपसमूह, विशेष रूप से [[मोटी हो जाओ|सेमिरिंग]] के गुणक उपसमूह के लिए रोचक होते हैं। 0 के साथ सेमीरिंग के स्थिति में, अवशोषक तत्व की परिभाषा कभी-कभी निश्चित होती है ताकि 0 को शोषक करने की आवश्यकता न हो; अन्यथा, 0 ही एकमात्र अवशोषक तत्व होगा।<ref>J.S. Golan p. 67</ref>
शोषक करने वाले तत्व विशेष रूप से उपसमूह, विशेष रूप से [[मोटी हो जाओ|अर्धवलय]] के गुणक उपसमूह के लिए रोचक होते हैं। 0 के साथ अर्धवलय के स्थिति में, अवशोषक तत्व की परिभाषा कभी-कभी निश्चित होती है ताकि 0 को शोषक करने की आवश्यकता न हो; अन्यथा, 0 ही एकमात्र अवशोषक तत्व होगा।<ref>J.S. Golan p. 67</ref>




== गुण ==
== गुण ==
* यदि किसी मैग्मा में बायाँ शून्य z और दायाँ शून्य z′ दोनों हैं, तो इसका एक शून्य है, चूँकि {{nowrap|1=''z'' = ''z'' • ''z''′ = ''z''′}}.
* यदि किसी मैग्मा में बायाँ शून्य z और दायाँ शून्य z′ हैं, तो {{nowrap|1=''z'' = ''z'' • ''z''′ = ''z''′}} के बाद से इसका शून्य होगा।
* मैग्मा में अधिकतम एक शून्य तत्व हो सकता है।
* मैग्मा में अधिकतम एक शून्य तत्व हो सकता है।


== उदाहरण ==
== उदाहरण ==
* अवशोषक तत्व का सबसे प्रसिद्ध उदाहरण प्राथमिक बीजगणित से आता है, जहां किसी भी संख्या को शून्य से गुणा करने पर शून्य के बराबर होता है। शून्य इस प्रकार एक अवशोषक तत्व है।
* अवशोषक तत्व का सबसे प्रसिद्ध उदाहरण प्राथमिक बीजगणित से आता है, जहां किसी भी संख्या को शून्य से गुणा करने पर शून्य के बराबर होता है। शून्य इस प्रकार एक अवशोषक तत्व है।
*किसी भी वलय (गणित) का शून्य भी अवशोषक तत्व होता है। वलय R के एक अवयव r के लिए, r0=r(0+0)=r0+r0, इसलिए 0=r0, क्योंकि शून्य अद्वितीय अवयव a है जिसके लिए r-r=a वलय R में किसी भी r के लिए है। यह गुण धारण करता है rng (गणित) में भी सत्य है क्योंकि गुणात्मक पहचान की आवश्यकता नहीं है।
*किसी भी वलय (गणित) का शून्य भी अवशोषक तत्व होता है। वलय R के एक तत्व r के लिए, r0=r(0+0)=r0+r0, इसलिए 0=r0, क्योंकि शून्य अद्वितीय तत्व a है जिसके लिए r-r=a वलय R में किसी भी r के लिए है। यह गुण धारण करता है rng (गणित) में भी सत्य है क्योंकि गुणात्मक पहचान की आवश्यकता नहीं है।
* IEEE-754 मानक में परिभाषित [[तैरनेवाला स्थल]] अंकगणित में विशेष मान होता है जिसे Not-a-Number ( NaN ) कहा जाता है। यह हर ऑपरेशन के लिए अवशोषक तत्व है; अर्थात।, {{nowrap|1=''x'' + NaN = NaN + ''x'' = NaN}}, {{nowrap|1=''x'' − NaN = NaN − ''x'' = NaN}}, वगैरह।
*आईईईई-754 मानक में परिभाषित [[तैरनेवाला स्थल|फ़्लोटिंग पॉइंट]] अंकगणित में विशेष मान होता है जिसे Not-a-Number ( NaN ) कहा जाता है। यह हर ऑपरेशन के लिए अवशोषक तत्व है; अर्थात।, {{nowrap|1=''x'' + NaN = NaN + ''x'' = NaN}}, {{nowrap|1=''x'' − NaN = NaN − ''x'' = NaN}}, आदि।
* समुच्चय एक्स पर बाइनरी संबंधों का समुच्चय, संबंधों की संरचना के साथ शून्य के साथ [[मोनोइड]] बनाता है, जहां शून्य तत्व [[खाली संबंध]] ([[खाली सेट|खाली समुच्चय]]) होता है।
* समुच्चय एक्स पर बाइनरी संबंधों का समुच्चय, संबंधों की संरचना के साथ शून्य के साथ [[मोनोइड]] बनाता है, जहां शून्य तत्व [[खाली संबंध]] ([[खाली सेट|खाली समुच्चय]]) होता है।
* बंद अंतराल {{nowrap|1=''H'' = [0, 1]}} साथ {{nowrap|1=''x'' • ''y'' = min(''x'', ''y'')}} भी शून्य के साथ मोनोइड है, और शून्य तत्व 0 है।
* बंद अंतराल {{nowrap|1=''H'' = [0, 1]}} साथ {{nowrap|1=''x'' • ''y'' = min(''x'', ''y'')}} भी शून्य के साथ मोनोइड है, और शून्य तत्व 0 है।
* और ज्यादा उदाहरण:
* और अधिक उदाहरण के लिये:
{| class="wikitable" style="margin: 1em auto 1em auto"
{| class="wikitable" style="margin: 1em auto 1em auto"
! Domain
! Domain

Revision as of 19:34, 1 March 2023

गणित में, एक शोषक तत्व (या नष्ट करने वाला तत्व) उस समुच्चय पर बाइनरी ऑपरेशन के संबंध में एक समुच्चय (गणित) का एक विशेष प्रकार का तत्व है। समुच्चय के किसी भी तत्व के साथ अवशोषक तत्व के संयोजन का परिणाम अवशोषी तत्व ही है। अर्धसमूह सिद्धांत में, अवशोषक तत्व को शून्य तत्व कहा जाता है[1][2] क्योंकि उल्लेखनीय अपवाद के साथ, शून्य तत्व के साथ भ्रम का कोई खतरा नहीं है: योगात्मक संकेतन के अनुसार शून्य स्वाभाविक रूप से, एक मोनोइड के तटस्थ तत्व को निरूपित कर सकता है। इस लेख में शून्य तत्व और शोषक तत्व पर्यायवाची हैं।

परिभाषा

औपचारिक रूप से, चलो (S, •) एक समुच्चय S है जिसमें एक बंद बाइनरी ऑपरेशन • (मैग्मा (बीजगणित) के रूप में जाना जाता है) हैं। 'शून्य तत्व' एक ऐसा तत्व z है, जो S, zs = sz = z में सभी s के लिए है। इस धारणा को बाएँ शून्य की धारणाओं में परिष्कृत किया जा सकता है, जहाँ किसी को केवल zs = z, और दाएँ शून्य उसकी आवश्यकता होती है, जहाँ sz = z है।[2]

शोषक करने वाले तत्व विशेष रूप से उपसमूह, विशेष रूप से अर्धवलय के गुणक उपसमूह के लिए रोचक होते हैं। 0 के साथ अर्धवलय के स्थिति में, अवशोषक तत्व की परिभाषा कभी-कभी निश्चित होती है ताकि 0 को शोषक करने की आवश्यकता न हो; अन्यथा, 0 ही एकमात्र अवशोषक तत्व होगा।[3]


गुण

  • यदि किसी मैग्मा में बायाँ शून्य z और दायाँ शून्य z′ हैं, तो z = zz′ = z के बाद से इसका शून्य होगा।
  • मैग्मा में अधिकतम एक शून्य तत्व हो सकता है।

उदाहरण

  • अवशोषक तत्व का सबसे प्रसिद्ध उदाहरण प्राथमिक बीजगणित से आता है, जहां किसी भी संख्या को शून्य से गुणा करने पर शून्य के बराबर होता है। शून्य इस प्रकार एक अवशोषक तत्व है।
  • किसी भी वलय (गणित) का शून्य भी अवशोषक तत्व होता है। वलय R के एक तत्व r के लिए, r0=r(0+0)=r0+r0, इसलिए 0=r0, क्योंकि शून्य अद्वितीय तत्व a है जिसके लिए r-r=a वलय R में किसी भी r के लिए है। यह गुण धारण करता है rng (गणित) में भी सत्य है क्योंकि गुणात्मक पहचान की आवश्यकता नहीं है।
  • आईईईई-754 मानक में परिभाषित फ़्लोटिंग पॉइंट अंकगणित में विशेष मान होता है जिसे Not-a-Number ( NaN ) कहा जाता है। यह हर ऑपरेशन के लिए अवशोषक तत्व है; अर्थात।, x + NaN = NaN + x = NaN, x − NaN = NaN − x = NaN, आदि।
  • समुच्चय एक्स पर बाइनरी संबंधों का समुच्चय, संबंधों की संरचना के साथ शून्य के साथ मोनोइड बनाता है, जहां शून्य तत्व खाली संबंध (खाली समुच्चय) होता है।
  • बंद अंतराल H = [0, 1] साथ xy = min(x, y) भी शून्य के साथ मोनोइड है, और शून्य तत्व 0 है।
  • और अधिक उदाहरण के लिये:
Domain Operation Absorber
Real numbers Multiplication 0
Integers Greatest common divisor 1
n-by-n square matrices Matrix multiplication Matrix of all zeroes
Extended real numbers Minimum/infimum −∞
Maximum/supremum +∞
Sets Intersection Empty set
Subsets of a set M Union M
Boolean logic Logical and Falsity
Logical or Truth


यह भी देखें

टिप्पणियाँ

  1. J.M. Howie, pp. 2–3
  2. 2.0 2.1 M. Kilp, U. Knauer, A.V. Mikhalev pp. 14–15
  3. J.S. Golan p. 67


संदर्भ

  • Howie, John M. (1995). Fundamentals of Semigroup Theory. Clarendon Press. ISBN 0-19-851194-9.
  • M. Kilp, U. Knauer, A.V. Mikhalev, Monoids, Acts and Categories with Applications to Wreath Products and Graphs, De Gruyter Expositions in Mathematics vol. 29, Walter de Gruyter, 2000, ISBN 3-11-015248-7.
  • Golan, Jonathan S. (1999). Semirings and Their Applications. Springer. ISBN 0-7923-5786-8.


बाहरी संबंध