तर्क स्तर
अंकीय परिपथ में, एक तर्क स्तर स्थिति (कंप्यूटर विज्ञान) की एक परिमित संख्या में से एक है जो एक डिजिटल संकेत (इलेक्ट्रॉनिक्स) में रह सकता है। तर्क स्तर सामान्यतः संकेत और ग्राउंड (बिजली) के Bच वोल्टेज अंतर द्वारा दर्शाए जाते हैं, हालांकि अन्य मानक भी उपलब्ध हैं। प्रत्येक स्थिति का प्रतिनिधित्व करने वाले वोल्टेज स्तरों की सीमा उपयोग किए जा रहे तर्क कुल पर निर्भर करती है।
विभिन्न परिपथो के Bच संगतता की अनुमति देने के लिए एक तर्क-स्तर शिफ्टर का उपयोग किया जा सकता है।
2-स्तरीय तर्क
द्वि आधारी तर्क में दो स्तर "उच्च" तर्क और "निम्न" तर्क होते हैं, जो सामान्यतः क्रमशः द्विआधारी संख्या 1 और 0 के अनुरूप होते हैं या सत्य मान क्रमशः 'सत्य' और 'असत्य' होते हैं। अंकीय परिपथ प्रारुप या विश्लेषण के लिए इन दो स्तरों में से एक के साथ संकेतों का उपयोग बूलियन Bजगणित में किया जा सकता है।
सक्रिय स्थिति
तर्क स्थिति का प्रतिनिधित्व करने के लिए या तो उच्च या निम्न वोल्टेज स्तर का उपयोग स्वैच्छिक है। दो विकल्प सक्रिय उच्च (सकारात्मक तर्क) और सक्रिय निम्न (नकारात्मक तर्क) हैं। सक्रिय-उच्च और सक्रिय-निम्न अवस्थाओं को विल में मिलाया जा सकता है, उदाहरण के लिए, एक रीड ओनली मेमोरी एकीकृत परिपथ में एक चिप वरण संकेत हो सकता है जो निम्न सक्रिय है, लेकिन डेटा और एड्रेस बिट्स पारंपरिक रूप से उच्च सक्रिय हैं। कभी-कभी सक्रिय स्तर के विकल्प को उलट कर एक तर्क प्रारूप को सरल बनाया जाता है (डी मॉर्गन के नियम देखें)।
तर्क स्तर | सक्रिय-उच्च संकेत | सक्रिय-कम संकेत |
---|---|---|
"उच्च" तर्क | 1 | 0 |
"निम्न" तर्क | 0 | 1 |
एक सक्रिय-कम संकेत का नाम ऐतिहासिक रूप से इसके ऊपर एक बार के साथ लिखा जाता है ताकि इसे सक्रिय-उच्च संकेत से अलग किया जा सके। उदाहरण के लिए, नाम Q "Q बार" या "Q नॉट" पढ़ा जाता है, एक सक्रिय-निम्न संकेत का प्रतिनिधित्व करता है। सामान्यतः उपयोग किए जाने वाले कन्वेंशन हैं,
- ऊपर एक बार (Q)
- एक अग्रणी स्लैश (/Q)
- एक लोअर-केस n उपसर्ग या प्रत्यय (nQ या Q_n)
- एक अनुगामी # (Q#), या
- एक "_B" या "_L" प्रत्यय (Q_B या Q_L)।[1]
इलेक्ट्रॉनिक्स में कई नियंत्रण संकेत सक्रिय-निम्न संकेत हैं [2] (सामान्यतः लाइनों का पुनर्नियोजन चिप वरण लाइनों की तरह करें)। TTL जैसे तर्क कुल स्रोत की तुलना में अधिक धारा प्रवाहित कर सकते हैं, इसलिए अपव्यय और रव अग्राहिता में वृद्धि होती है। यदि तर्क गेट संग्राहक/ओपन ड्रेन ऊर्ध्व प्रतिरोधक के साथ हैं तो यह तारकृत-या तर्क की भी अनुमति देता है। इसके उदाहरण I²सी बस और नियंत्रक क्षेत्र नेटवर्क (सीएएन), और पीसीआई लोकल बस है।
कुछ संकेतों का दोनों स्थितियों में अर्थ होता है और संकेतन ऐसा संकेत दे सकता है। उदाहरण के लिए, पठन/लेखन की रेखा को R/W नामित करना साधारण बात है, यह दर्शाता है कि पढ़ने के मामले में संकेत उच्च है और लिखने के मामले में कम है .
तर्क वोल्टेज स्तर
दो तार्किक अवस्थाओं को सामान्यतः दो अलग-अलग वोल्टेज द्वारा दर्शाया जाता है, लेकिन कुछ तर्क संकेतो,जैसे डिजिटल धारा लूप अंतराफलक और धारा विधा तर्क में दो अलग-अलग धाराओं का उपयोग किया जाता है। प्रत्येक तर्क कुल के लिए उच्च और निम्न सीमाएँ निर्दिष्ट हैं। निम्न देहली के नीचे होने पर, संकेत "कम" होता है। उच्च दहली से ऊपर होने पर, संकेत "उच्च" होता है। मध्यवर्ती स्तर अपरिभाषित हैं, जिसके परिणामस्वरूप अत्यधिक कार्यान्वयन-विशिष्ट परिपथ व्यवहार होता है।
उपयोग किए जाने वाले वोल्टेज स्तरों में कुछ सहिष्णुता की अनुमति देना सामान्य है, उदाहरण के लिए, 0 से 2 वोल्ट तर्क 0 का, और 3 से 5 वोल्ट तर्क 1 का प्रतिनिधित्व कर सकते हैं। 2 से 3 वोल्ट का वोल्टेज अमान्य होगा जो केवल दोषपूर्ण स्थिति में या तर्क स्तर के संक्रमण के दौरान होता है। हालाँकि, कुछ तर्क परिपथ ऐसी स्थिति का पता लगा सकते हैं, जो अधिकांश उपकरण अपरिभाषित या उपकरण-विशिष्ट तरीके से संकेत को केवल उच्च या निम्न के रूप में व्याख्या करेंगे। कुछ तर्क उपकरणों में श्मिट ट्रिगर निविष्ट सम्मिलित होते हैं, जिनका व्यवहार देहली क्षेत्र में बेहतर परिभाषित होता है और निविष्ट वोल्टेज में छोटे बदलाव के लिए लचीलापन बढ़ाता है। परिपथ अभिकल्पक की समस्या उन परिस्थितियों से बचना है जो मध्यवर्ती स्तरों का उत्पादन करती हैं, ताकि परिपथ अनुमानित रूप से व्यवहार करे।
प्रौद्योगिकी | L वोल्टेज | एच वोल्टेज | टिप्पणियाँ |
---|---|---|---|
CMOS[3] [4] | 0 Vसे 30% VDD | 70% VDD से VDD | VDD = वोल्टेज आपूर्ति |
TTL[3] | 0 Vसे 0.8 V | 2 Vसे VCC | VCC = 5 V±5% (7400 वाणिज्यिक परिवार) या±10% (5400 सैन्य परिवार) |
लगभग सभी डिजिटल परिपथ सभी आंतरिक संकेतों के लिए एक सुसंगत तर्क स्तर का उपयोग करते हैं। हालाँकि, वह स्तर एक प्रणाली से दूसरी प्रणाली में भिन्न होता है। किन्हीं दो तर्क परिवारों को आपस में जोड़ने के लिए प्राय: विशेष तकनीकों की आवश्यकता होती है जैसे कि अतिरिक्त ऊर्ध्व प्रतिरोधक या उद्देश्य-निर्मित अंतरापृष्ठीय परिपथ जिन्हें स्तर विस्थापक के रूप में जाना जाता है। एक स्तर विस्थापक एक डिजिटल परिपथ को जोड़ता है जो एक तर्क स्तर का उपयोग दूसरे डिजिटल परिपथ में करता है जो दूसरे तर्क स्तर का उपयोग करता है। प्राय: दो स्तर के विस्थापको का उपयोग किया जाता है, प्रत्येक प्रणाली में एक, एक लाइन चालित्र आंतरिक तर्क स्तरों से मानक अंतरापृष्ठ लाइन स्तरों में परिवर्तित होता है, एक लाइन रिसीवर अंतरापृष्ठ स्तरों से आंतरिक वोल्टेज स्तरों में परिवर्तित होता है।
उदाहरण के लिए, TTL स्तर CMOS से भिन्न होते हैं। सामान्यतः, एक TTL निर्गत इतना अधिक नहीं बढ़ता है कि CMOS निविष्ट द्वारा तर्क 1 के रूप में विश्वसनीय रूप से पहचाना जा सके, खासकर अगर यह केवल एक उच्च-निविष्ट-प्रतिबाधा CMOS निविष्ट से जुड़ा है जो महत्वपूर्ण धारा का स्रोत नहीं है। इस समस्या को उपकरणों के 74एचसीटी परिवार के आविष्कार द्वारा हल किया गया था जो CMOS तकनीक का उपयोग करते है लेकिन TTL निविष्ट तर्क स्तरों उपयोग नही करते है। ये उपकरण केवल 5 V बिजली आपूर्ति के साथ काम करते हैं।
वोल्टेज आपूर्ति | तकनीकी | तर्क परिवार (उदाहरण) | संदर्भ |
---|---|---|---|
5V, 10V, 15V | धातु CMOS | 4000, 74C | [4] |
5V | TTL | 7400, 74एस, 74Lएस, 74एLएस, 74एफ, 74एच | [5] |
5V | BCMOS | 74एBटी, 74Bसीटी | |
5V | CMOS (TTL आई/ओ) | 74एचसीटी, 74एएचसीटी, 74एसीटी | [6] |
3.3V, 5V | CMOS | 74एचसी, 74एएचसी, 74एसी | [5][6] |
5V | LVCMOS | 74LVसी, 74एएक्सपी | [7] |
3.3V | LVCMOS | 74LVसी, 74एयूपी, 74एएक्ससी, 74एएक्सपी | [7] |
2.5V | LVCMOS | 74LVसी, 74एयूपी, 74एयूसी, 74एएक्ससी, 74एएक्सपी | [7] |
1.8V | LVCMOS | 74LVसी, 74एयूपी, 74एयूसी, 74एएक्ससी, 74एएक्सपी | [7] |
1.5V | LVCMOS | 74एयूपी, 74एयूसी, 74एएक्ससी, 74एएक्सपी | [7] |
1.2V | LVCMOS | 74एयूपी, 74एयूसी, 74एएक्ससी, 74एएक्सपी | [7] |
3-मूल्य तर्क
हालांकि दुर्लभ, त्रिगुट कंप्यूटर 3 वोल्टेज स्तरों का उपयोग करके बेस 3 तीन-मूल्यवान तर्क या त्रिगुट तर्क का मूल्यांकन करते हैं।
3- स्थिति तर्क
0, 1, या जेड, अंतिम अर्थ उच्च प्रतिबाधा के साथ, तीन-स्थिति तर्क में, एक निर्गत उपकरण तीन संभावित अवस्थाओं में से एक में हो सकता है। यह वोल्टेज या तर्क स्तर नहीं है, लेकिन इसका मतलब यह है कि निर्गत संबद्ध परिपथ की स्थिति को नियंत्रित नहीं कर रहा है।
4-मूल्य तर्क
चार मूल्यवान तर्क एक चौथी स्थिति एक्स (परवाह नहीं) जोड़ता है, जिसका अर्थ है कि संकेत का मूल्य महत्वहीन और अपरिभाषित है। इसका मतलब है कि एक निविष्ट अपरिभाषित है, या कार्यान्वयन सुविधा के लिए एक निर्गत संकेत चुना जा सकता है (देखें कर्णघ मानचित्र § परवाह नहीं).
9-स्तर तर्क
आईईईई 1164 इलेक्ट्रॉनिक प्रारुप स्वचालन में उपयोग के लिए 9 तर्क स्थितियों को परिभाषित करता है। मानक में मजबूत और कमजोर संचालित संकेत, उच्च प्रतिबाधा और अज्ञात और गैर-प्रारंभिक अवस्थाएं सम्मिलित हैं।
बहु-स्तरीय सेल
ठोस अवस्था भंडारण उपकरण में, बहु स्तरीय सेल बहु वोल्टेज का उपयोग करके डेटा संगृहीत करता है। एक सेल में n बिट्स को संगृहीत करने के लिए उपकरण को 2n विभिन्न वोल्टेज स्तरों को मज़बूती से अलग करने की आवश्यकता होती है।
लाइन कोडिंग
डिजिटल लाइन कोड डेटा को अधिक कुशलता से संकेतीकरण में बदलने और संचारित करने के लिए दो से अधिक स्थितियो का उपयोग कर सकते हैं। उदाहरणों में एम्Lटी-3 संकेतन और स्पंद-आयाम मॉडुलन परिवर्त सम्मिलित हैं जिनका उपयोग इथरनेट द्वारा व्यवर्तित युग्म पर किया जाता है। उदाहरण के लिए, 100Bएएसई-टीएक्स तीन अलग-अलग वोल्टेज स्तरों (-1V, 0V, +1V) का उपयोग करके डेटा को कूटबद्ध करता है, और 1000Bएएसई-टी पाँच अलग-अलग वोल्टेज स्तरों (-2V, -1V, 0V, +1V, +2V) का उपयोग करके डेटा को कूटबद्ध करता है। एक बार प्राप्त होने के बाद, लाइन संकेतन को वापस द्विआधारी में बदल दिया जाता है।
यह भी देखें
- तर्क कुल
- डिजिटल धारा लूप अंतरापृष्ठ
संदर्भ
- ↑ "Coding Style Guidelines" (PDF). Xilinx. Retrieved 2017-08-17.
- ↑ Balch, Mark (2003). Complete Digital Design: A Comprehensive Guide To Digital Electronics And Computer System Architecture. McGraw-Hill Professional. p. 430. ISBN 978-0-07-140927-8.
- ↑ 3.0 3.1 "Logic signal voltage levels". All About Circuits. Retrieved 2015-03-29.
- ↑ 4.0 4.1 "HEF4000B Family Specifications" (PDF). Philips Semiconductors. January 1995. Archived from the original (PDF) on March 4, 2016.
Parametric limits are guaranteed for VDD of 5V, 10V, and 15V.
- ↑ 5.0 5.1 "AppNote 319 - Comparison of MM74HC to 74LS, 74S and 74ALS Logic" (PDF). Fairchild Semiconductor. June 1983. Archived (PDF) from the original on October 24, 2021.
- ↑ 6.0 6.1 "AHC/AHCT Designer's Guide" (PDF). Texas Instruments. September 1998. Archived (PDF) from the original on April 13, 2018.
Technical Comparison of AHC / HC / AC (CMOS I/O) and AHCT / HCT / ACT (TTL I/O) Logic Families
- ↑ 7.0 7.1 7.2 7.3 7.4 7.5 "Little Logic Guide" (PDF). Texas Instruments. 2018. Archived (PDF) from the original on April 3, 2021.
Logic Voltage Graph (page4)