For a more general, but more technical, treatment of tangent vectors, see Tangent space.
गणित में, एक स्पर्शरेखा सदिश एक सदिश (ज्यामिति) होता है जो किसी दिए गए बिंदु पर किसी वक्र या सतह (गणित) पर स्पर्शरेखा होता है। स्पर्शरेखा सदिशों का वर्णन R में वक्रों के संदर्भ में वक्रों की विभेदक ज्यामिति में किया गया हैएन. अधिक आम तौर पर, स्पर्शरेखा सदिश एक अलग-अलग कई गुना के स्पर्शरेखा स्थान के तत्व होते हैं। स्पर्शरेखा सदिशों को जर्म (गणित) के संदर्भ में भी वर्णित किया जा सकता है। औपचारिक रूप से, बिंदु पर एक स्पर्शरेखा सदिश कीटाणुओं के सेट द्वारा परिभाषित बीजगणित का एक रेखीय व्युत्पत्ति (अंतर बीजगणित) है .
स्पर्शरेखा सदिश की सामान्य परिभाषा पर आगे बढ़ने से पहले, हम कलन में इसके उपयोग और इसके टेन्सर गुणों पर चर्चा करते हैं।
पथरी
होने देना एक पैरामीट्रिक चिकनी वक्र बनें। स्पर्शरेखा वेक्टर द्वारा दिया गया है , जहां हमने पैरामीटर के संबंध में भेदभाव को इंगित करने के लिए सामान्य बिंदु के बजाय प्राइम का उपयोग किया है t.[1] इकाई स्पर्शरेखा वेक्टर द्वारा दिया गया है
उदाहरण
वक्र दिया
में , इकाई स्पर्शरेखा वेक्टर पर द्वारा दिया गया है
विपरीतता
अगर n-आयामी निर्देशांक प्रणाली|n-आयामी निर्देशांक प्रणाली में पैरामीट्रिक रूप से दिया गया है xi (यहां हमने सामान्य सबस्क्रिप्ट के बजाय सुपरस्क्रिप्ट को इंडेक्स के रूप में उपयोग किया है)। या
फिर स्पर्शरेखा सदिश क्षेत्र द्वारा दिया गया है
निर्देशांक के परिवर्तन के तहत
स्पर्शरेखा वेक्टर में ui-निर्देशांक प्रणाली किसके द्वारा दी जाती है
जहां हमने आइंस्टीन संकेतन का इस्तेमाल किया है। इसलिए, एक चिकने वक्र का एक स्पर्शरेखा सदिश एक सहप्रसरण के रूप में रूपांतरित होगा और निर्देशांक के परिवर्तन के तहत एक क्रम के सदिशों के प्रतिप्रसरण के रूप में परिवर्तित होगा।[2]
परिभाषा
होने देना एक भिन्न कार्य हो और चलो में एक वेक्टर बनें . हम दिशात्मक व्युत्पन्न को परिभाषित करते हैं एक बिंदु पर दिशा द्वारा
बिंदु पर स्पर्शरेखा सदिश तब परिभाषित किया जा सकता है[3] जैसा
गुण
होने देना अलग-अलग कार्य हो, चलो स्पर्शरेखा वैक्टर बनें पर , और जाने . तब
कई गुना पर स्पर्शरेखा वेक्टर
होने देना एक अलग करने योग्य कई गुना हो और चलो पर वास्तविक-मूल्यवान भिन्न-भिन्न कार्यों का बीजगणित हो . फिर स्पर्शरेखा वेक्टर को एक बिंदु पर कई गुना व्युत्पत्ति (अंतर बीजगणित) द्वारा दिया जाता है जो रैखिक होगा - अर्थात, किसी के लिए भी और अपने पास
ध्यान दें कि व्युत्पत्ति परिभाषा के अनुसार लीबनिज़ संपत्ति होगी