क्वांटम संदर्भ फ्रेम

From Vigyanwiki
Revision as of 19:17, 12 March 2023 by alpha>Kajal

क्वांटम संदर्भ फ्रेम एक संदर्भ फ्रेम है जिसे सैद्धांतिक रूप से क्वांटम माना जाता है। यह, संदर्भ के किसी भी फ्रेम की प्रकार, सार समन्वय प्रणाली है जो समय की स्थिति, गति, घूर्णन (भौतिकी), आदि जैसी भौतिक मात्राओं को परिभाषित करती है क्योंकि इसे क्वांटम यांत्रिकी सिद्धांत की औपचारिकता के अंदर माना जाता है, इसमें कुछ रोचक गुण हैं जो सामान्य चिरसम्मत संदर्भ फ्रेम में उपस्थित नहीं हैं।

चिरसम्मत यांत्रिकी और जड़त्वीय फ्रेम में संदर्भ फ्रेम

एक साधारण भौतिकी समस्या पर विचार करें, एक कार इस प्रकार चलती है कि वह प्रत्येक 2 मिनट में 1 मील की दूरी तय करती है, मीटर प्रति सेकंड में उसका वेग क्या है? कुछ रूपांतरण और गणना के साथ, उत्तर 13.41मी/से के साथ आ सकता है; दूसरी ओर, इसके अतिरिक्त कोई स्वयं के सापेक्ष 0 का उत्तर दे सकता है। पहला उत्तर सही है क्योंकि यह पहचानता है कि समस्या में संदर्भ फ्रेम निहित है। दूसरा, यद्यपि पांडित्यपूर्ण, भी सही है क्योंकि यह इस तथ्य का शोषण करता है कि समस्या द्वारा निर्दिष्ट कोई विशेष संदर्भ फ्रेम नहीं है। यह सरल समस्या संदर्भ फ्रेम के महत्व को दर्शाती है: संदर्भ फ्रेम प्रणाली के स्पष्ट विवरण में सर्वोत्कृष्ट है, चाहे वह स्पष्ट रूप से या स्पष्ट रूप से शामिल हो।

जब किसी कार के पूर्व की ओर बढ़ने की बात की जाती है, तो वह पृथ्वी की सतह पर विशेष बिंदु की बात कर रहा होता है; इसके अलावा, जैसे-जैसे पृथ्वी घूम रही है, कार वास्तव में सूर्य के संबंध में बदलती दिशा की ओर बढ़ रही है। वास्तव में, यह सबसे अच्छा है जो कोई कर सकता है: किसी संदर्भ फ्रेम के संबंध में प्रणाली का वर्णन करना। निरपेक्ष स्थान के संबंध में प्रणाली का वर्णन करना बहुत मायने नहीं रखता है क्योंकि निरपेक्ष स्थान, यदि यह उपस्थित है, तो यह अप्राप्य है। इसलिए, ऊपर दिए गए उदाहरण में कार के पथ का किसी निरपेक्ष स्थान के संबंध में वर्णन करना असंभव है। पूर्ण स्थान की इस धारणा ने न्यूटन सहित कई भौतिकविदों को सदियों से परेशान किया है। दरअसल, न्यूटन इस बात से पूरी प्रकार वाकिफ थे कि सभी जड़त्वीय फ्रेम दूसरे के अवलोकन संबंधी तुल्यता हैं। सीधे शब्दों में कहें, निकायों की प्रणाली के सापेक्ष गति पूरे सिस्टम की जड़ें गति पर निर्भर नहीं होती हैं।[1] जड़त्वीय संदर्भ फ्रेम (या संक्षेप में जड़त्वीय फ्रेम) ऐसा फ्रेम है जिसमें सभी भौतिक नियम धारण करते हैं। उदाहरण के लिए, घूर्णन संदर्भ फ्रेम में, न्यूटन के नियमों को संशोधित करना पड़ता है क्योंकि अतिरिक्त कोरिओलिस बल होता है (ऐसा फ्रेम गैर-जड़त्वीय फ्रेम का उदाहरण है)। यहाँ, घूर्णन का अर्थ है किसी जड़त्वीय फ्रेम के संबंध में घूमना। इसलिए, हालांकि यह सच है कि संदर्भ फ्रेम को हमेशा सुविधा के लिए किसी भी भौतिक प्रणाली के रूप में चुना जा सकता है, किसी भी प्रणाली को अंततः प्रत्यक्ष या अप्रत्यक्ष रूप से जड़त्वीय फ्रेम द्वारा वर्णित किया जाना चाहिए। अंत में, कोई पूछ सकता है कि जड़त्वीय फ्रेम कैसे पाया जा सकता है, और उत्तर न्यूटन के नियमों में निहित है, कम से कम न्यूटोनियन यांत्रिकी में: पहला कानून जड़त्वीय फ्रेम के अस्तित्व की गारंटी देता है जबकि दूसरा और तीसरा कानून यह जांचने के लिए उपयोग किया जाता है कि क्या दिया गया संदर्भ फ्रेम जड़त्वीय है या नहीं।

ऐसा प्रतीत हो सकता है कि जड़त्वीय ढांचा अब न्यूटन के नियमों को देखते हुए आसानी से पाया जा सकता है क्योंकि अनुभवजन्य परीक्षण सुलभ हैं। बिल्कुल ही विप्रीत; बिल्कुल जड़त्वीय फ्रेम नहीं है और सबसे अधिक संभावना कभी ज्ञात नहीं होगी। इसके अतिरिक्त, जड़त्वीय फ्रेम अनुमानित है। जब तक मापन द्वारा सन्निकटन की त्रुटि का पता नहीं लगाया जा सकता है, तब तक लगभग जड़त्वीय फ्रेम (या बस प्रभावी फ्रेम) यथोचित जड़त्वीय फ्रेम के करीब है। प्रभावी फ्रेम के साथ और भौतिक कानूनों को इस प्रकार के फ्रेम में मान्य मानते हुए, सिस्टम का विवरण उतना ही अच्छा होगा जितना कि बिल्कुल जड़त्वीय फ्रेम का उपयोग किया गया था। विषयांतर के रूप में, खगोलविद जिस प्रभावी फ्रेम का उपयोग करते हैं, वह प्रणाली है जिसे अंतर्राष्ट्रीय आकाशीय संदर्भ फ़्रेम (ICRF) कहा जाता है, जिसे 212 रेडियो स्रोतों द्वारा परिभाषित किया गया है और लगभग की सटीकता के साथ रेडियन। हालाँकि, यह संभावना है कि जब अधिक सटीक सन्निकटन की आवश्यकता होगी तो बेहतर की आवश्यकता होगी।

शुरुआत में ही समस्या पर पुनर्विचार करने पर, निश्चित रूप से इसमें अस्पष्टता का दोष पाया जा सकता है, लेकिन आमतौर पर यह समझा जाता है कि समस्या में मानक संदर्भ फ्रेम का निहित रूप से उपयोग किया जाता है। वास्तव में, जब संदर्भ फ्रेम चिरसम्मत होता है, तो सिस्टम के भौतिक विवरण में इसे शामिल करना या न करना अप्रासंगिक है। संदर्भ फ्रेम को आंतरिक या बाह्य रूप से व्यवहार करने से ही भविष्यवाणी प्राप्त होगी।

इस बिंदु को और स्पष्ट करने के लिए, दीवार से उछलती हुई गेंद के साथ सरल प्रणाली का उपयोग किया जाता है। इस प्रणाली में, दीवार को या तो बाहरी संभावित ऊर्जा के रूप में या गेंद के साथ बातचीत करने वाली गतिशील प्रणाली के रूप में माना जा सकता है। पूर्व में गेंद की गति के समीकरणों में बाहरी क्षमता को शामिल करना शामिल है जबकि बाद में दीवार की स्थिति को स्वतंत्रता (भौतिकी और रसायन विज्ञान) की गतिशील डिग्री के रूप में माना जाता है। दोनों उपचार ही भविष्यवाणी प्रदान करते हैं, और न ही दूसरे पर विशेष रूप से पसंद किया जाता है। हालाँकि, जैसा कि नीचे चर्चा की जाएगी, सिस्टम के क्वांटम मैकेनिकल होने पर पसंद की ऐसी स्वतंत्रता समाप्त हो जाती है।

क्वांटम संदर्भ फ्रेम

क्वांटम सिद्धांत के औपचारिकता में संदर्भ फ्रेम का इलाज किया जा सकता है, और इस मामले में, इसे क्वांटम संदर्भ फ्रेम के रूप में संदर्भित किया जाता है। अलग-अलग नाम और उपचार के बावजूद, क्वांटम संदर्भ फ्रेम अभी भी चिरसम्मत यांत्रिकी में संदर्भ फ्रेम के साथ बहुत सी धारणाएं साझा करता है। यह कुछ भौतिक प्रणाली से जुड़ा है, और यह रिलेशनल क्वांटम यांत्रिकी है।

उदाहरण के लिए, यदि घूर्णन-1/2 कण अवस्था में कहा जाता है , संदर्भ फ्रेम निहित है, और इसे प्रयोगशाला में उपकरण के संबंध में कुछ संदर्भ फ्रेम समझा जा सकता है। यह स्पष्ट है कि कण का विवरण इसे पूर्ण स्थान में नहीं रखता है, और ऐसा करने का कोई अर्थ नहीं होगा क्योंकि जैसा कि ऊपर उल्लेख किया गया है, पूर्ण स्थान अनुभवजन्य रूप से अप्राप्य है। दूसरी ओर, यदि y-अक्ष के साथ चुंबकीय क्षेत्र दिया हुआ कहा जाए, तो ऐसे क्षेत्र में कण के व्यवहार का वर्णन किया जा सकता है। इस अर्थ में, y और z केवल सापेक्ष दिशाएँ हैं। उनका पूर्ण अर्थ नहीं है और न ही उनकी आवश्यकता है।

कोई यह देख सकता है कि बर्लिन में प्रयोगशाला में उपयोग की जाने वाली z दिशा मेलबोर्न में प्रयोगशाला में प्रयुक्त z दिशा से पूरी प्रकार से भिन्न होती है। एकल साझा संदर्भ फ्रेम स्थापित करने की कोशिश कर रही दो प्रयोगशालाओं को संरेखण से जुड़े महत्वपूर्ण मुद्दों का सामना करना पड़ेगा। इस प्रकार के संचार और समन्वय का अध्ययन क्वांटम सूचना सिद्धांत में प्रमुख विषय है।

जैसे इस घूर्णन-1/2 कण उदाहरण में, क्वांटम संदर्भ फ्रेम लगभग हमेशा क्वांटम राज्यों की परिभाषा में अंतर्निहित रूप से व्यवहार किया जाता है, और क्वांटम राज्य में संदर्भ फ्रेम को शामिल करने की प्रक्रिया को संदर्भ फ्रेम का परिमाणीकरण/आंतरिककरण कहा जाता है जबकि प्रक्रिया क्वांटम स्थिति से संदर्भ फ्रेम को बाहर करने को डीक्वांटाइजेशन कहा जाता है[citation needed]/संदर्भ फ्रेम का बाह्यीकरण। चिरसम्मत मामले के विपरीत, जिसमें संदर्भ को आंतरिक या बाह्य रूप से व्यवहार करना विशुद्ध रूप से सौंदर्य पसंद है, संदर्भ फ्रेम को आंतरिक और बाह्य बनाने से क्वांटम सिद्धांत में फर्क पड़ता है।[2] क्वांटम संदर्भ फ्रेम के अस्तित्व पर अंतिम टिप्पणी की जा सकती है। आखिरकार, संदर्भ फ्रेम, परिभाषा के अनुसार, अच्छी प्रकार से परिभाषित स्थिति और गति है, जबकि क्वांटम सिद्धांत, अर्थात् अनिश्चितता सिद्धांत, कहता है कि कोई भी अच्छी प्रकार से परिभाषित स्थिति और गति के साथ किसी भी क्वांटम प्रणाली का वर्णन नहीं कर सकता है, इसलिए ऐसा लगता है कि कुछ है दोनों के बीच विरोधाभास। यह पता चला है, प्रभावी फ्रेम, इस मामले में चिरसम्मत एक, संदर्भ फ्रेम के रूप में उपयोग किया जाता है, जैसे न्यूटोनियन यांत्रिकी में लगभग जड़त्वीय फ्रेम का उपयोग किया जाता है, और भौतिक कानूनों को इस प्रभावी फ्रेम में मान्य माना जाता है। दूसरे शब्दों में, चुने गए संदर्भ फ्रेम में गति जड़त्वीय है या नहीं यह अप्रासंगिक है।

Aharanov और Kaufherr द्वारा प्रेरित हाइड्रोजन परमाणु का निम्नलिखित उपचार मामले पर प्रकाश डाल सकता है।[3] मान लीजिए कि हाइड्रोजन परमाणु को गति की सुपरिभाषित अवस्था में दिया गया है, तो कोई इलेक्ट्रॉन की स्थिति का वर्णन कैसे कर सकता है? इसका उत्तर उसी निर्देशांक के सापेक्ष इलेक्ट्रॉन की स्थिति का वर्णन करना नहीं है जिसमें परमाणु गति में है, क्योंकि ऐसा करने से अनिश्चितता सिद्धांत का उल्लंघन होगा, बल्कि नाभिक के सापेक्ष इसकी स्थिति का वर्णन करना है। नतीजतन, इससे सामान्य मामले के बारे में और अधिक कहा जा सकता है: सामान्य तौर पर, क्वांटम सिद्धांत में भी, संदर्भ फ्रेम में अच्छी प्रकार से परिभाषित स्थिति और किसी अन्य संदर्भ फ्रेम में अच्छी प्रकार से परिभाषित गति के साथ प्रणाली होने की अनुमति है। .

== क्वांटम संदर्भ फ्रेम == के आगे के विचार

क्वांटम सिद्धांत में संदर्भ फ्रेम के उपचार का उदाहरण

हाइड्रोजन परमाणु पर विचार करें। कूलम्ब क्षमता केवल प्रोटॉन और इलेक्ट्रॉन के बीच की दूरी पर निर्भर करती है:

इस समरूपता के साथ, केंद्रीय क्षमता में कण की समस्या कम हो जाती है:

चरों के पृथक्करण का उपयोग करते हुए, समीकरण के समाधान को रेडियल और कोणीय भागों में लिखा जा सकता है:

कहाँ , और क्रमशः कक्षीय कोणीय गति, चुंबकीय और ऊर्जा क्वांटम संख्याएँ हैं।

अब प्रोटॉन और इलेक्ट्रॉन के लिए श्रोडिंगर समीकरण पर विचार करें:

रिलेशनल और सेंटर-ऑफ़-मास निर्देशांक में चर का परिवर्तन उपज देता है

कहाँ कुल द्रव्यमान है और घटा हुआ द्रव्यमान है। चर के पृथक्करण के बाद गोलाकार निर्देशांक में अंतिम परिवर्तन के लिए समीकरण प्राप्त होगा उपर से।

हालाँकि, यदि पहले किए गए चरों के परिवर्तन को अब उलट दिया जाना है, तो केंद्र-द्रव्यमान को समीकरण में वापस लाने की आवश्यकता है :

इस परिणाम का महत्व यह है कि यह दर्शाता है कि यौगिक प्रणाली के लिए वेवफंक्शन क्वांटम उलझाव है, जो चिरसम्मत स्टैंड पॉइंट में सामान्य रूप से सोचने के विपरीत है। इससे भी महत्वपूर्ण बात यह है कि हाइड्रोजन परमाणु की ऊर्जा न केवल इलेक्ट्रॉन के साथ बल्कि प्रोटॉन के साथ भी जुड़ी हुई है, और कुल राज्य इलेक्ट्रॉन के लिए राज्य में उत्पाद राज्य नहीं है और प्रोटॉन के लिए अलग से है।[1]


अधिचयन नियम

सुपरसेलेक्शन नियम, संक्षेप में, क्वांटम स्टेट्स की तैयारी को प्रतिबंधित करने वाले पोस्ट किए गए नियम हैं जो कुछ वेधशालाओं के आइजनस्टेट्स के बीच सामंजस्य प्रदर्शित करते हैं। यह मूल रूप से चयन नियमों से परे क्वांटम सिद्धांत पर अतिरिक्त प्रतिबंध लगाने के लिए शुरू किया गया था। उदाहरण के रूप में, विद्युत आवेशों के लिए सुपरसलेक्शन नियम विभिन्न चार्ज आइजेनस्टेट्स के सुसंगत सुपरपोजिशन की तैयारी को अस्वीकार करते हैं।

जैसा कि यह पता चला है, संदर्भ फ्रेम की कमी गणितीय रूप से सुपरसलेक्शन नियमों के बराबर है। यह शक्तिशाली कथन है क्योंकि सुपरसलेक्शन नियमों को लंबे समय से स्वयंसिद्ध प्रकृति का माना जाता है, और अब इसकी मौलिक स्थिति और यहां तक ​​कि इसकी आवश्यकता पर भी सवाल उठाया जाता है। फिर भी, यह दिखाया गया है कि क्वांटम सिस्टम पर सभी सुपरसेलेक्शन नियमों को उठाना सैद्धांतिक रूप से हमेशा संभव है (हालांकि हमेशा आसान नहीं होता है)।

क्वांटम संदर्भ फ्रेम का ह्रास

मापन के दौरान, जब भी सिस्टम और उपयोग किए गए संदर्भ फ्रेम के बीच संबंधों की पूछताछ की जाती है, तो अनिवार्य रूप से दोनों में गड़बड़ी होती है, जिसे मापन बैक एक्शन (क्वांटम) के रूप में जाना जाता है। जैसा कि इस प्रक्रिया को दोहराया जाता है, यह माप परिणामों की सटीकता को कम करता है, और संदर्भ फ्रेम की उपयोगिता में कमी को क्वांटम संदर्भ फ्रेम की गिरावट के रूप में संदर्भित किया जाता है।[4][5] संदर्भ फ्रेम के अवक्रमण को मापने का तरीका दीर्घायु को मापना है, अर्थात् माप की संख्या जो संदर्भ फ्रेम के खिलाफ बनाई जा सकती है जब तक कि निश्चित त्रुटि सहनशीलता पार नहीं हो जाती।

उदाहरण के लिए, घूर्णन के लिए- प्रणाली, माप की अधिकतम संख्या जो त्रुटि सहिष्णुता से पहले की जा सकती है, , से अधिक है द्वारा दिया गया है . तो इस विशेष मामले में दीर्घायु और संदर्भ फ्रेम का आकार द्विघात संबंध है।[6] इस चक्कर में- प्रणाली, गिरावट संदर्भ फ्रेम राज्य की शुद्धता के नुकसान के कारण है। दूसरी ओर, पृष्ठभूमि संदर्भ के गलत संरेखण के कारण गिरावट भी हो सकती है। यह दिखाया गया है, ऐसे मामले में, दीर्घायु का संदर्भ फ्रेम के आकार के साथ रैखिक संबंध होता है।[4]


संदर्भ

  1. 1.0 1.1 Dickson, Michael (2004). "A view from nowhere: quantum reference frames and uncertainty". Studies in History and Philosophy of Modern Physics. 35 (2): 195–220. Bibcode:2004SHPMP..35..195D. doi:10.1016/j.shpsb.2003.12.003.
  2. Barlett, Stephen D.; Rudolph, Terry; Spekkens, Robert W. (2006). "Dialogue concerning two views on quantum coherences: factist and fictionist". International Journal of Quantum Information. 4: 17. arXiv:quant-ph/0507214. Bibcode:2005quant.ph..7214B. doi:10.1142/S0219749906001591. S2CID 16503770.
  3. Aharonov, Y.; T. Kaufherr (1984). "संदर्भ के क्वांटम फ्रेम". Phys. Rev. D. 30 (2): 368–385. Bibcode:1984PhRvD..30..368A. doi:10.1103/PhysRevD.30.368.
  4. 4.0 4.1 Poulin, D.; J. Yard (2007). "क्वांटम संदर्भ फ्रेम की गतिशीलता". New J. Phys. 9 (5): 156. arXiv:quant-ph/0612126. Bibcode:2007NJPh....9..156P. doi:10.1088/1367-2630/9/5/156. S2CID 8337465.
  5. Ahmadi, Mehdi; Jennings, David; Rudolph, Terry (2010). "चयनात्मक मापन और सुसंगत अंतःक्रियाओं से गुजरने वाले एक क्वांटम संदर्भ फ्रेम की गतिशीलता". Physical Review A. 82 (3): 032320. arXiv:1005.0798. doi:10.1103/PhysRevA.82.032320. S2CID 119270210.
  6. Bartlett, Stephen D.; Rudolph, Terry; Spekkens, Robert W. (April–June 2007). "संदर्भ फ़्रेम, सुपरसलेक्शन नियम और क्वांटम जानकारी". Reviews of Modern Physics. 79 (2): 555–606. arXiv:quant-ph/0610030. Bibcode:2007RvMP...79..555B. doi:10.1103/RevModPhys.79.555. S2CID 118880279.


यह भी देखें

श्रेणी:क्वांटम यांत्रिकी