जैक फलन एक पूर्णांक विभाजन का , पैरामीटर , और तर्क पुनरावर्ती रूप से परिभाषित किया जा सकता है
इस प्रकार है:
एम = 1 के लिए
एम> 1 के लिए
जहां योग सभी विभाजनों पर है ऐसा कि तिरछा विभाजन एक क्षैतिज पट्टी है, अर्थात्
( शून्य या अन्यथा होना चाहिए ) और
कहाँ के बराबर होती है अगर और अन्यथा। भाव और के संयुग्मी विभाजनों को देखें और , क्रमश। अंकन इसका मतलब है कि उत्पाद को सभी निर्देशांकों पर ले लिया गया है विभाजन के यंग आरेख में बक्सों की संख्या .
संयोजन सूत्र
1997 में, एफ. नोप और एस. साही [1] ने जैक बहुपदों के लिए विशुद्ध रूप से संयोजी सूत्र दिया एन चर में:
आकार की सभी स्वीकार्य झांकी पर योग लिया जाता है और
साथ
आकार की एक स्वीकार्य झाँकी यंग डायग्राम की फिलिंग है संख्या 1,2,…,n के साथ जैसे कि झांकी में किसी भी बॉक्स (i,j) के लिए,
जब कभी भी
जब कभी भी और
एक बॉक्स झांकी टी के लिए महत्वपूर्ण है अगर और
यह परिणाम मैकडोनाल्ड बहुपदों के लिए अधिक सामान्य संयोजी सूत्र के एक विशेष मामले के रूप में देखा जा सकता है।
सी सामान्यीकरण
जैक फ़ंक्शंस आंतरिक उत्पाद के साथ सममित बहुपदों के स्थान में एक ऑर्थोगोनल आधार बनाते हैं:
यह ओर्थोगोनलिटी संपत्ति सामान्यीकरण से अप्रभावित है। ऊपर परिभाषित सामान्यीकरण को आमतौर पर जे सामान्यीकरण कहा जाता है। सी सामान्यीकरण के रूप में परिभाषित किया गया है
कहाँ
के लिए द्वारा अक्सर दर्शाया जाता है और आंचलिक बहुपद कहा जाता है।
पी सामान्यीकरण
पी सामान्यीकरण पहचान द्वारा दिया जाता है , कहाँ
कहाँ और युवा झाँकी#हाथ और पैर की लंबाई क्रमशः दर्शाता है। इसलिए, के लिए सामान्य शूर कार्य है।
शूर बहुपदों के समान, युवा झांकी के योग के रूप में व्यक्त किया जा सकता है। हालाँकि, प्रत्येक झांकी में एक अतिरिक्त वजन जोड़ने की आवश्यकता होती है जो पैरामीटर पर निर्भर करता है .
इस प्रकार, एक सूत्र [2] जैक फलनके लिए द्वारा दिया गया है
जहां आकार की सभी झांकी पर योग लिया जाता है , और T के बॉक्स s में प्रविष्टि को दर्शाता है।
भार निम्नलिखित फैशन में परिभाषित किया जा सकता है: आकार की प्रत्येक झांकी टी विभाजन के अनुक्रम के रूप में व्याख्या की जा सकती है
कहाँ टी में सामग्री i के साथ तिरछा आकार परिभाषित करता है। फिर
कहाँ
और उत्पाद केवल सभी बक्सों में लिया जाता है ऐसा है कि एस से एक बॉक्स है एक ही पंक्ति में, लेकिन एक ही कॉलम में नहीं।
== शूर बहुपद == के साथ संबंध
कब जैक फलन शूर बहुपद का एक अदिश गुणक है
कहाँ
की सभी हुक लंबाई का उत्पाद है .
गुण
यदि विभाजन में चर की संख्या से अधिक भाग हैं, तो जैक फ़ंक्शन 0 है:
मैट्रिक्स तर्क
कुछ ग्रंथों में, विशेष रूप से यादृच्छिक मैट्रिक्स सिद्धांत में, लेखकों ने जैक फ़ंक्शन में मैट्रिक्स तर्क का उपयोग करना अधिक सुविधाजनक पाया है। कनेक्शन सरल है। अगर eigenvalues के साथ एक मैट्रिक्स है
, तब
Jack, Henry (1970–1971), "A class of symmetric polynomials with a parameter", Proceedings of the Royal Society of Edinburgh, Section A. Mathematics, 69: 1–18, MR0289462.