पॉलीइलेक्ट्रोलाइट
पॉलीइलेक्ट्रोलाइट्स पॉलिमर हैं जिनकी दोहराई जाने वाली इकाइयां एक इलेक्ट्रोलाइट समूह रखती हैं। आयन # ऋणायन और धनायन पोलीइलेक्ट्रोलाइट्स हैं। ये समूह जलीय घोल (पानी) में पृथक्करण (रसायन विज्ञान) करते हैं, जिससे पॉलिमर चार्ज (भौतिकी) बनते हैं। पॉलीइलेक्ट्रोलाइट गुण इस प्रकार इलेक्ट्रोलाइट्स (लवण) और पॉलिमर (उच्च आणविक भार यौगिक) दोनों के समान होते हैं और कभी-कभी इन्हें पॉलीसाल्ट्स कहा जाता है। लवण की तरह, उनके समाधान विद्युत प्रवाहकीय होते हैं। पॉलिमर की तरह, उनके समाधान अक्सर चिपचिपाहट वाले होते हैं। चार्ज आणविक श्रृंखला, आमतौर पर नरम पदार्थ प्रणालियों में मौजूद होती है, संरचना, स्थिरता और विभिन्न आणविक विधानसभाओं की बातचीत को निर्धारित करने में एक मौलिक भूमिका निभाती है। सैद्धांतिक दृष्टिकोण[1] उनके सांख्यिकीय गुणों का वर्णन करने के लिए उनके विद्युत तटस्थ समकक्षों से गहराई से भिन्न होते हैं, जबकि तकनीकी और औद्योगिक क्षेत्र उनके अद्वितीय गुणों का शोषण करते हैं। कई जैविक अणु पॉलीइलेक्ट्रोलाइट्स हैं। उदाहरण के लिए, पॉलीपेप्टाइड्स, ग्लाइकोसामिनोग्लाइकेन्स और डीएनए पॉलीइलेक्ट्रोलाइट्स हैं। विभिन्न प्रकार के उद्योगों में प्राकृतिक और सिंथेटिक पॉलीइलेक्ट्रोलाइट्स दोनों का उपयोग किया जाता है।
Polyelectrolyte: Polymer composed of macromolecules in which a substantial portion of the constitutional units contains ionic or ionizable groups, or both.[2] Notes:
- The terms polyelectrolyte, polymer electrolyte, and polymeric electrolyte should not be confused with the term solid polymer electrolyte.
- Polyelectrolytes can be either synthetic or natural. Nucleic acids, proteins, teichoic acids, some polypeptides, and some polysaccharides are examples of natural polyelectrolytes.
आवेश
अम्ल को या तो कमजोर अम्ल या दृढ़ अम्ल के रूप में वर्गीकृत किया जाता है (और बेस (रसायन विज्ञान) इसी प्रकार या तो कमजोर आधार या दृढ़ आधार हो सकता है)। इसी तरह, पॉलीइलेक्ट्रोलाइट्स को कमजोर और दृढ़ प्रकारों में विभाजित किया जा सकता है। दृढ़ पॉलीइलेक्ट्रोलाइट वह है जो सबसे उचित पीएच मानों के समाधान में पूरी प्रकार से अलग हो जाता है। कमजोर पॉलीइलेक्ट्रोलाइट, इसके विपरीत, ~ 2 से ~ 10 की सीमा में पृथक्करण स्थिरांक (पीकेए या पीकेबी) है, जिसका अर्थ है कि यह मध्यवर्ती पीएच में आंशिक रूप से अलग हो जाएगा। इस प्रकार, कमजोर पॉलीइलेक्ट्रोलाइट्स समाधान में पूरी प्रकार से आवेश नहीं होते हैं, और इसके अतिरिक्त उनके आंशिक आवेश को समाधान पीएच, काउंटर-आयन एकाग्रता, या आयनिक शक्ति को बदलकर संशोधित किया जा सकता है।
पॉलीइलेक्ट्रोलाइट समाधानों के भौतिक गुण सामान्यतः चार्जिंग की इस डिग्री से दृढ़ता से प्रभावित होते हैं। चूंकि पॉलीइलेक्ट्रोलाइट पृथक्करण काउंटर-आयन निरंतर करता है, यह आवश्यक रूप से समाधान की आयनिक शक्ति को प्रभावित करता है, और इसलिए डेबी की लंबाई। यह बदले में अन्य गुणों को प्रभावित करता है, जैसे चालकता (इलेक्ट्रोलाइटिक)।
जब दो विपरीत रूप से आवेश किए गए पॉलिमर (अर्थात, पॉलीकेशन का समाधान और पॉलीअनियन का समाधान) मिलाया जाता है, तो सामान्यतः बल्क कॉम्प्लेक्स (अवक्षेपण) बनता है। ऐसा इसलिए होता है क्योंकि विपरीत आवेश वाले पॉलिमर दूसरे को आकर्षित करते हैं और साथ बांधते हैं।
रचना
किसी भी बहुलक की संरचना कई कारकों से प्रभावित होती है: विशेष रूप से बहुलक वास्तुकला और विलायक संबंध। पॉलीइलेक्ट्रोलाइट्स के स्थिति में, आवेश का भी प्रभाव पड़ता है। जबकि अपरिवर्तित रैखिक बहुलक श्रृंखला सामान्यतः समाधान में यादृच्छिक रचना में पाई जाती है ( स्व-परहेज त्रि-आयामी यादृच्छिक चलने का बारीकी से अनुमान लगाती है), रैखिक पॉलीइलेक्ट्रोलाइट श्रृंखला पर आरोप दूसरे को दोहरी परत बलों के माध्यम से पीछे हटा देंगे, जिससे श्रृंखला का कारण बनता है अधिक विस्तारित, कठोर-छड़ जैसी रचना को अपनाएं। यदि समाधान में अतिरिक्त नमक का बड़ा सौदा होता है, तो आरोपों की परीक्षण की जाएगी और इसके परिणामस्वरूप पॉलीइलेक्ट्रोलाइट श्रृंखला अधिक परंपरागत संरचना (अनिवार्य रूप से अच्छे विलायक में तटस्थ श्रृंखला के समान) के लिए गिर जाएगी।
पॉलिमर रासायनिक संरचना निश्चित रूप से कई थोक गुणों (जैसे चिपचिपाहट, मैलापन, आदि) को प्रभावित करती है। यद्यपि पॉलीइलेक्ट्रोलाइट्स की सांख्यिकीय रचना को पारंपरिक बहुलक सिद्धांत के वेरिएंट का उपयोग करके कैप्चर किया जा सकता है, लेकिन इलेक्ट्रोस्टैटिक इंटरैक्शन की लंबी दूरी की प्रकृति के कारण, यह सामान्य रूप से पॉलीइलेक्ट्रोलाइट श्रृंखलाओं को ठीक से मॉडल करने के लिए काफी कम्प्यूटेशनल रूप से गहन है। स्थैतिक प्रकाश प्रकीर्णन जैसी तकनीकों का उपयोग पॉलीइलेक्ट्रोलाइट रचना और गठनात्मक परिवर्तनों का अध्ययन करने के लिए किया जा सकता है।
पॉलीएम्फोलाइट्स
पॉलीइलेक्ट्रोलाइट्स जो दोनों cationic और anionic रिपीट ग्रुप को सहन करते हैं, उन्हें पॉलीएम्फोलाइट्स कहा जाता है। इन समूहों के अम्ल-बेस संतुलन के मध्य प्रतिस्पर्धा उनके शारीरिक व्यवहार में अतिरिक्त जटिलताएं पैदा करती है। ये पॉलिमर सामान्यतः केवल तभी घुलते हैं जब पर्याप्त मात्रा में नमक मिलाया जाता है, जो विपरीत आवेश वाले सेगमेंट के मध्य की बातचीत को स्क्रीन करता है। एम्फ़ोटेरिक मैक्रोपोरस हाइड्रोजेल के स्थिति में केंद्रित नमक समाधान की कार्रवाई से मैक्रोमोलेक्युलस के सहसंयोजक क्रॉस-लिंकिंग के कारण पॉलीएम्फोलाइट सामग्री का विघटन नहीं होता है। सिंथेटिक 3-डी मैक्रोपोरस हाइड्रोजेल बेहद पतला जलीय घोल से पीएच की विस्तृत श्रृंखला में भारी-धातु आयनों को सोखने की उत्कृष्ट क्षमता दिखाता है, जिसे पश्चात में नमकीन पानी के शुद्धिकरण के लिए सोखने वाले के रूप में उपयोग किया जा सकता है।[3][4] सभी प्रोटीन पॉलीएम्फोलाइट्स होते हैं, क्योंकि कुछ एमिनो अम्ल अम्लीय होते हैं, जबकि अन्य बुनियादी होते हैं।
Ampholytic polymer: Polyelectrolyte composed of macromolecules containing both cationic and anionic groups, or corresponding ionizable group. Note:
- An ampholytic polymer in which ionic groups of opposite sign are incorporated into the same pendant groups is called, depending on the structure of the pendant groups, a zwitterionic polymer, polymeric inner salt, or polybetaine.
अनुप्रयोग
पॉलीइलेक्ट्रोलाइट्स के कई अनुप्रयोग हैं, जो ज्यादातर जलीय घोलों और जैल के प्रवाह और स्थिरता गुणों को संशोधित करने से संबंधित हैं। उदाहरण के लिए, उनका उपयोग कोलाइडल निलंबन को अस्थिर करने और flocculation (वर्षा) आरंभ करने के लिए किया जा सकता है। उनका उपयोग तटस्थ कणों को सतह आवेश प्रदान करने के लिए भी किया जा सकता है, जिससे उन्हें जलीय घोल में फैलाने में मदद मिलती है। इस प्रकार वे अक्सर थिकनेस, पायसीकारकों, कंडीशनर (रसायन विज्ञान), स्पष्ट करने वाले एजेंट और यहां तक कि ड्रैग (भौतिकी) रिड्यूसर के रूप में उपयोग किए जाते हैं। उनका उपयोग जल उपचार और पेट्रोलियम निष्कर्षण के लिए किया जाता है। कई साबुन, शैंपू और सौंदर्य प्रसाधन में पॉलीइलेक्ट्रोलाइट्स शामिल होते हैं। इसके अलावा, उन्हें कई खाद्य पदार्थों और ठोस मिश्रण (superplasticizer) में जोड़ा जाता है। खाद्य लेबल पर दिखाई देने वाले कुछ पॉलीइलेक्ट्रोलाइट्स कंघी के समान आकार , carrageenan, alginate और कार्बोक्सिमिथाइल सेलुलोज हैं। अंतिम को छोड़कर सभी प्राकृतिक मूल के हैं। अंत में, उनका उपयोग सीमेंट सहित विभिन्न प्रकार की सामग्रियों में किया जाता है।
क्योंकि उनमें से कुछ पानी में घुलनशील हैं, उन्हें जैव रासायनिक और चिकित्सा अनुप्रयोगों के लिए भी जांचा जाता है। प्रत्यारोपण (दवा) कोटिंग्स के लिए बायोकम्पैटिबल पॉलीइलेक्ट्रोलाइट्स का उपयोग करने, नियंत्रित ड्रग रिलीज और अन्य अनुप्रयोगों के लिए वर्तमान में बहुत शोध है। इस प्रकार, हाल ही में, पॉलीइलेक्ट्रोलाइट कॉम्प्लेक्स से बना biocompatible और बायोडिग्रेडेबल मैक्रोपोरस सामग्री का वर्णन किया गया था, जहां सामग्री ने स्तनधारी कोशिकाओं के उत्कृष्ट प्रसार का प्रदर्शन किया था। [5] और मसल जैसे सॉफ्ट एक्चुएटर.
बहुपरत
पॉलीइलेक्ट्रोलाइट्स का उपयोग नए प्रकार की सामग्रियों के निर्माण में किया गया है जिन्हें पॉलीइलेक्ट्रोलाइट मल्टीलेयर्स (पीईएम) के रूप में जाना जाता है। इन पतली फिल्मों का निर्माण परत-दर-परत (LbL) निक्षेपण तकनीक का उपयोग करके किया जाता है। एलबीएल जमाव के दौरान, सकारात्मक और नकारात्मक रूप से आवेश किए गए पॉलीइलेक्ट्रोलाइट समाधानों के पतला स्नान के मध्य उपयुक्त विकास सब्सट्रेट (सामान्यतः आवेश किया जाता है) को आगे और पीछे डुबोया जाता है। प्रत्येक डिप के दौरान पॉलीइलेक्ट्रोलाइट की छोटी मात्रा को सोख लिया जाता है और सतह के आवेश को उलट दिया जाता है, जिससे पॉलीकेशन-पॉलियनियन परतों के इलेक्ट्रोस्टैटिकली पार लिंक ्ड फिल्मों के क्रमिक और नियंत्रित निर्माण की अनुमति मिलती है। वैज्ञानिकों ने एकल-नैनोमीटर पैमाने पर ऐसी फिल्मों के मोटाई नियंत्रण का प्रदर्शन किया है। nanoparticle ्स या जिओलाइट्स जैसी आवेशित प्रजातियों को प्रतिस्थापित करके एलबीएल फिल्मों का निर्माण भी किया जा सकता है[6] पॉलीइलेक्ट्रोलाइट्स में से के स्थान पर या इसके अतिरिक्त। इलेक्ट्रोस्टैटिक्स के बजाय हाइड्रोजन बंधन का उपयोग करके एलबीएल बयान भी पूरा किया गया है। बहुपरत निर्माण के बारे में अधिक जानकारी के लिए कृपया पॉलीइलेक्ट्रोलाइट सोखना देखें।
सोने के सब्सट्रेट पर पीईएम (पीएसएस-पीएएच (पॉली (एलिलमाइन) हाइड्रोक्लोराइड)) का एलबीएल गठन चित्र में देखा जा सकता है। सोखना कैनेटीक्स, परत की मोटाई और ऑप्टिकल घनत्व निर्धारित करने के लिए गठन को मल्टी-पैरामीट्रिक सरफेस प्लास्मोन रेजोनेंस का उपयोग करके मापा जाता है।[7]
पीईएम कोटिंग्स के मुख्य लाभ वस्तुओं को अनुरूप रूप से कोट करने की क्षमता है (अर्थात, तकनीक फ्लैट वस्तुओं को कोटिंग करने तक सीमित नहीं है), जल-आधारित प्रक्रियाओं का उपयोग करने के पर्यावरणीय लाभ, उचित लागत और विशेष रासायनिक गुणों का उपयोग। आगे के संशोधन के लिए फिल्म, जैसे कि धातु या अर्धचालक नैनोकणों का संश्लेषण, या विरोधी-चिंतनशील कोटिंग्स, ऑप्टिकल शटर (फोटोग्राफी), और सुपरहाइड्रोफोबिक कोटिंग्स बनाने के लिए सरंध्रता चरण संक्रमण।
ब्रिजिंग
यदि पॉलीइलेक्ट्रोलाइट श्रृंखलाओं को आवेशित स्थूल आयनों (अर्थात डीएनए अणुओं की सरणी) की प्रणाली में जोड़ा जाता है, तो पॉलीइलेक्ट्रोलाइट ब्रिजिंग नामक दिलचस्प घटना हो सकती है।[8] ब्रिजिंग इंटरैक्शन शब्द सामान्यतः उस स्थिति पर लागू होता है जहां एकल पॉलीइलेक्ट्रोलाइट श्रृंखला दो (या अधिक) विपरीत रूप से आवेशित स्थूल आयनों (जैसे डीएनए अणु) को सोख सकती है, इस प्रकार आणविक पुलों की स्थापना करती है और, इसकी कनेक्टिविटी के माध्यम से, उनके मध्य आकर्षक अंतःक्रियाओं की मध्यस्थता करती है।
छोटे स्थूल अलगाव पर, स्थूल आयनों के मध्य श्रृंखला को निचोड़ा जाता है और सिस्टम में इलेक्ट्रोस्टैटिक प्रभाव पूरी प्रकारसे स्टेरिक प्रभाव से हावी हो जाते हैं - सिस्टम प्रभावी रूप से छुट्टी दे दी जाती है। जैसे-जैसे हम स्थूल पृथक्करण को बढ़ाते हैं, हम साथ-साथ उनके द्वारा अधिशोषित पॉलीइलेक्ट्रोलाइट श्रृंखला को भी खींचते हैं। श्रृंखला का खिंचाव श्रृंखला की रबर लोच के कारण उपर्युक्त आकर्षक अंतःक्रियाओं को जन्म देता है।
इसकी कनेक्टिविटी के कारण पॉलीइलेक्ट्रोलाइट श्रृंखला का व्यवहार सीमित असंबद्ध आयनों के स्थिति में लगभग कोई समानता नहीं रखता है।
पॉलीअम्ल
बहुलक शब्दावली में, पॉलीअम्ल मोनोमर के पर्याप्त अंश पर अम्ल समूहों वाले बड़े अणुओं से बना पॉलीइलेक्ट्रोलाइट है।
सामान्यतः, अम्ल समूह –COOH, –SO3H, या –PO3H2 होते हैं।[9]
यह भी देखें
संदर्भ
- ↑ de Gennes, Pierre-Gilles (1979). पॉलिमर भौतिकी में स्केलिंग अवधारणाएँ. Cornell University Press. ISBN 0-8014-1203-X.
- ↑ Hess, M.; Jones, R. G.; Kahovec, J.; Kitayama, T.; Kratochvíl, P.; Kubisa, P.; Mormann, W.; Stepto, R. F. T.; Tabak, D.; Vohlídal, J.; Wilks, E. S. (1 January 2006). "Terminology of polymers containing ionizable or ionic groups and of polymers containing ions (IUPAC Recommendations 2006)". Pure and Applied Chemistry. 78 (11): 2067–2074. doi:10.1351/pac200678112067. S2CID 98243251.
- ↑ Kudaibergenov, S. (2012). "Novel macroporous amphoteric gels: Preparation and characterization". Express Polymer Letters. 6 (5): 346–353. doi:10.3144/expresspolymlett.2012.38.
- ↑ Tatykhanova, G. S.; Sadakbayeva, Z. K.; Berillo, D.; Galaev, I.; Abdullin, K. A.; Adilov, Z.; Kudaibergenov, S. E. (2012). "एलिलामाइन और मेथैक्रेलिक एसिड पर आधारित एम्फोटेरिक क्रायोगल्स के धातु परिसर". Macromolecular Symposia. 317–318: 18–27. doi:10.1002/masy.201100065.
- ↑ Berillo, D.; Elowsson, L.; Kirsebom, H. (2012). "चिटोसन क्रायोगेल स्कैफोल्ड्स के लिए क्रॉसलिंकर के रूप में ऑक्सीकृत डेक्सट्रान और चिटोसन और जिलेटिन के बीच पॉलीइलेक्ट्रोलाइट कॉम्प्लेक्स का निर्माण". Macromolecular Bioscience. 12 (8): 1090–9. doi:10.1002/mabi.201200023. PMID 22674878.
- ↑ Lee, Goo Soo; Lee, Yun-Jo; Yoon, Kyung Byung (2001). "आयोनिक इंकर्स के रूप में पॉलीइलेक्ट्रोलाइट्स के साथ ग्लास पर जिओलाइट क्रिस्टल की परत-दर-परत असेंबली". Journal of the American Chemical Society. 123 (40): 9769–79. doi:10.1021/ja010517q. PMID 11583538.
- ↑ Granqvist, Niko; Liang, Huamin; Laurila, Terhi; Sadowski, Janusz; Yliperttula, Marjo; Viitala, Tapani (2013). "सरफेस प्लास्मोन रेजोनेंस थ्री-वेवलेंथ और वेवगाइड मोड एनालिसिस द्वारा अल्ट्राथिन और थिक ऑर्गेनिक लेयर्स की विशेषता". Langmuir. 29 (27): 8561–71. doi:10.1021/la401084w. PMID 23758623.
- ↑ Podgornik, R.; Ličer, M. (2006). "चार्ज किए गए मैक्रोमोलेक्यूल्स के बीच पॉलीइलेक्ट्रोलाइट ब्रिजिंग इंटरैक्शन". Current Opinion in Colloid & Interface Science. 11 (5): 273. doi:10.1016/j.cocis.2006.08.001.
- ↑ Hess, M.; Jones, R. G.; Kahovec, J.; Kitayama, T.; Kratochvíl, P.; Kubisa, P.; Mormann, W.; Stepto, R. F. T.; et al. (2006). "Terminology of polymers containing ionizable or ionic groups and of polymers containing ions (IUPAC Recommendations 2006)" (PDF). Pure and Applied Chemistry. 78 (11): 2067. doi:10.1351/pac200678112067. S2CID 98243251.