सीमांत स्थिरता
This article needs additional citations for verification. (August 2014) (Learn how and when to remove this template message) |
गतिशील प्रणालियों और नियंत्रण सिद्धांत में, एक रैखिक प्रणाली समय-अपरिवर्तनीय प्रणाली मामूली रूप से स्थिर होती है यदि यह न तो असम्बद्ध रूप से स्थिर है और न ही अस्थिर है। मोटे तौर पर कहा जाए तो, एक प्रणाली स्थिर होती है यदि यह हमेशा किसी विशेष स्थिति (जिसे स्थिर अवस्था कहा जाता है) पर लौटती है और उसके पास रहती है, और अस्थिर होती है यदि यह किसी भी स्थिति से बिना बंधे हुए दूर और दूर जाती है । एक सीमांत प्रणाली, जिसे कभी-कभी तटस्थ स्थिरता के रूप में संदर्भित किया जाता है,[1] इन दो प्रकारों के बीच है: जब विस्थापित किया जाता है, तो यह एक सामान्य स्थिर स्थिति के पास नहीं लौटता है, और न ही यह असीमित रूप से जहां से शुरू हुआ था, वहां से दूर जाता है।
सीमांत स्थिरता, अस्थिरता की तरह एक ऐसी विशेषता है जिससे नियंत्रण सिद्धांत बचना चाहता है; हम चाहते हैं कि, जब किसी बाहरी बल से परेशान हो, एक प्रणाली वांछित स्थिति में वापस आ जाएगी। यह उचित रूप से डिज़ाइन किए गए नियंत्रण एल्गोरिदम के उपयोग की आवश्यकता है।
अर्थमिति में, देखी गई समय श्रृंखला में एक इकाई जड़ की उपस्थिति, उन्हें मामूली स्थिर प्रदान करते हुए, एक निर्भर चर पर स्वतंत्र चर के प्रभाव के संबंध में अमान्य प्रतिगमन विश्लेषण परिणाम पैदा कर सकता है, जब तक कि सिस्टम को एक स्थिर प्रणाली में परिवर्तित करने के लिए उपयुक्त तकनीकों का उपयोग नहीं किया जाता है।
अर्थमिति में, देखी गई समय श्रृंखला में एक यूनिट रूट की उपस्थिति, उन्हें मामूली स्थिर प्रदान करते हुए,
निरंतर समय
एक सजातीय अंतर समीकरण निरंतर समय रैखिक समय-अपरिवर्तनीय प्रणाली मामूली रूप से स्थिर होती है यदि और केवल अगर प्रणाली के हस्तांतरण-फ़ंक्शन में प्रत्येक ध्रुव (जटिल विश्लेषण) (eigenvalue) का वास्तविक भाग गैर-सकारात्मक है, एक या अधिक ध्रुवों में शून्य वास्तविक भाग होता है और गैर-शून्य काल्पनिक भाग, और शून्य वास्तविक भाग वाले सभी ध्रुव सरल जड़ें हैं (अर्थात जटिल तल पर ध्रुव एक दूसरे से अलग हैं)। इसके विपरीत, यदि सभी ध्रुवों में सख्ती से नकारात्मक वास्तविक भाग होते हैं, तो प्रणाली इसके बजाय असम्बद्ध रूप से स्थिर होती है। यदि एक या अधिक ध्रुवों में सकारात्मक वास्तविक भाग होते हैं, तो सिस्टम अस्थिर होता है।
यदि प्रणाली राज्य अंतरिक्ष प्रतिनिधित्व में है, तो जॉर्डन सामान्य रूप प्राप्त करके सीमांत स्थिरता का विश्लेषण किया जा सकता है:[2] अगर और केवल अगर जॉर्डन ब्लॉक शून्य वास्तविक भाग वाले ध्रुवों के अनुरूप हैं तो स्केलर प्रणाली मामूली रूप से स्थिर है।
असतत समय
एक सजातीय असतत समय रैखिक समय-अपरिवर्तनीय प्रणाली आंशिक रूप से स्थिर होती है यदि और केवल अगर हस्तांतरण समारोह के किसी भी ध्रुव (ईगेनवेल्यूज) का सबसे बड़ा परिमाण 1 है, और 1 के बराबर परिमाण वाले ध्रुव सभी अलग हैं। यही है, ट्रांसफर फ़ंक्शन का वर्णक्रमीय त्रिज्या 1 है। यदि स्पेक्ट्रल त्रिज्या 1 से कम है, तो सिस्टम इसके बजाय असम्बद्ध रूप से स्थिर है।
एक सरल उदाहरण में एक प्रथम-क्रम रैखिक अंतर समीकरण शामिल है: मान लीजिए कि एक राज्य चर x के अनुसार विकसित होता है
पैरामीटर a> 0 के साथ। यदि सिस्टम मान से परेशान है इसके बाद के मूल्यों का क्रम है यदि a < 1, तो ये संख्याएँ आरंभिक मान की परवाह किए बिना 0 के करीब और करीब आ जाती हैं जबकि यदि a> 1 संख्या बिना किसी सीमा के बड़ी और बड़ी हो जाती है। लेकिन अगर a = 1, संख्याएं इनमें से कुछ भी नहीं करती हैं: इसके बजाय, x के भविष्य के सभी मान मान के बराबर होते हैं इस प्रकार मामला a = 1 सीमांत स्थिरता प्रदर्शित करता है।
सिस्टम प्रतिक्रिया
एक मामूली रूप से स्थिर प्रणाली वह है, जिसे यदि इनपुट के रूप में परिमित परिमाण का एक डायराक डेल्टा समारोह दिया जाता है, तो वह विस्फोट नहीं करेगा और एक असीमित आउटपुट देगा, लेकिन न तो आउटपुट शून्य पर वापस आएगा। आउटपुट में एक सीमित ऑफ़सेट या दोलन अनिश्चित काल तक बने रहेंगे, और इसलिए सामान्य रूप से कोई अंतिम स्थिर-स्थिति आउटपुट नहीं होगा। यदि एक सतत प्रणाली को शून्य वास्तविक भाग वाले ध्रुव की आवृत्ति के बराबर आवृत्ति पर इनपुट दिया जाता है, तो सिस्टम का आउटपुट अनिश्चित काल तक बढ़ जाएगा (इसे शुद्ध अनुनाद के रूप में जाना जाता है)[3]). यह बताता है कि बीआईबीओ स्थिरता के लिए एक प्रणाली के लिए, ध्रुवों के वास्तविक हिस्सों को सख्ती से नकारात्मक (और केवल गैर-सकारात्मक नहीं) होना चाहिए।
काल्पनिक ध्रुवों वाली एक सतत प्रणाली, यानी ध्रुवों में शून्य वास्तविक भाग होने से, आउटपुट में निरंतर दोलन उत्पन्न होंगे। उदाहरण के लिए, एक अडम्प्ड सेकंड-ऑर्डर सिस्टम जैसे कि एक ऑटोमोबाइल में सस्पेंशन सिस्टम (एक द्रव्यमान-स्प्रिंग-डैम्पर सिस्टम), जिसमें से डैम्पर को हटा दिया गया है और स्प्रिंग आदर्श है, यानी कोई घर्षण नहीं है, सिद्धांत रूप में हमेशा के लिए दोलन करेगा एक बार परेशान। एक अन्य उदाहरण एक घर्षण रहित पेंडुलम (गणित) है। मूल बिंदु पर एक ध्रुव के साथ एक प्रणाली भी मामूली रूप से स्थिर है लेकिन इस मामले में प्रतिक्रिया में कोई दोलन नहीं होगा क्योंकि काल्पनिक भाग भी शून्य है (jw = 0 का अर्थ है w = 0 rad/sec)। ऐसी प्रणाली का एक उदाहरण घर्षण के साथ सतह पर द्रव्यमान है। जब एक बग़ल में आवेग लगाया जाता है, तो द्रव्यमान गति करेगा और कभी भी शून्य पर नहीं लौटेगा। हालांकि, द्रव्यमान घर्षण के कारण रुक जाएगा, और बग़ल में गति बंधी रहेगी।
चूंकि सीमांत ध्रुवों के स्थान बिल्कुल काल्पनिक अक्ष या यूनिट सर्कल (क्रमशः निरंतर समय और असतत समय प्रणालियों के लिए) पर होना चाहिए ताकि एक प्रणाली मामूली रूप से स्थिर हो, यह स्थिति व्यवहार में होने की संभावना नहीं है जब तक कि सीमांत स्थिरता एक अंतर्निहित सैद्धांतिक नहीं है प्रणाली की विशेषता।
स्टोकेस्टिक गतिकी
स्टोचैस्टिक गतिकी के संदर्भ में सीमांत स्थिरता भी एक महत्वपूर्ण अवधारणा है। उदाहरण के लिए, कुछ प्रक्रियाएँ यादृच्छिक चलन का अनुसरण कर सकती हैं, जैसा कि असतत समय में दिया गया है
कहाँ एक आई.आई.डी. आँकड़ों में त्रुटियां और अवशेष। इस समीकरण की एक इकाई जड़ है (इसकी विशेषता समीकरण (अंतर समीकरण के) के eigenvalue के लिए 1 का मान), और इसलिए सीमांत स्थिरता प्रदर्शित करता है, इसलिए इस तरह के समीकरण वाले सिस्टम को अनुभवजन्य रूप से मॉडलिंग करने में विशेष समय श्रृंखला तकनीकों का उपयोग किया जाना चाहिए।
मामूली रूप से स्थिर मार्कोव श्रृंखला वे हैं जिनके पास मार्कोव_चेन # गुण वर्ग हैं।
यह भी देखें
संदर्भ
- ↑ Gene F. Franklin; J. David Powell; Abbas Emami-Naeini (2006). डायनेमिक सिस्टम का फीडबैक नियंत्रण (5 ed.). Pearson Education. ISBN 0-13-149930-0.
- ↑ Karl J. Åström and Richard M. Murray. "रैखिक प्रणाली". Feedback Systems Wiki. Caltech. Retrieved 11 August 2014.
- ↑ "शुद्ध प्रतिध्वनि". MIT. Retrieved 2 September 2015.