आधार फलन

From Vigyanwiki
Revision as of 15:57, 28 March 2023 by alpha>Abhishek (Abhishek moved page आधार समारोह to आधार फलन without leaving a redirect)

गणित में, एक आधार फलन एक फलन स्थान के लिए एक विशेष आधार (रैखिक बीजगणित) का एक तत्व है। समारोह स्थान में प्रत्येक फ़ंक्शन (गणित) को आधार फ़ंक्शंस के रैखिक संयोजन के रूप में दर्शाया जा सकता है, जैसे सदिश स्थल में प्रत्येक वेक्टर को आधार वैक्टर के रैखिक संयोजन के रूप में दर्शाया जा सकता है।

संख्यात्मक विश्लेषण और सन्निकटन सिद्धांत में, आधार कार्यों को सम्मिश्रण कार्य भी कहा जाता है, क्योंकि प्रक्षेप में उनका उपयोग होता है: इस आवेदन में, आधार कार्यों का मिश्रण एक प्रक्षेपित कार्य प्रदान करता है (मिश्रण के आधार पर आधार कार्यों के मूल्यांकन के आधार पर) डेटा अंक)।

उदाहरण

सी के लिए मोनोमियल आधारω

विश्लेषणात्मक कार्यों के वेक्टर स्थान के लिए एकपद आधार दिया गया है

इस आधार का उपयोग टेलर श्रृंखला में, दूसरों के बीच में किया जाता है।

बहुपदों के लिए एकपदी आधार

मोनोमियल आधार भी बहुपदों के सदिश स्थान के लिए एक आधार बनाता है। आखिरकार, हर बहुपद को इस रूप में लिखा जा सकता है कुछ के लिए , जो कि मोनोमियल्स का एक रैखिक संयोजन है।

एल के लिए फूरियर आधार2[0,1]

त्रिकोणमितीय फ़ंक्शन एक बंधे हुए डोमेन पर स्क्वायर-इंटीग्रेबल फ़ंक्शन के लिए एक (orthonormality) स्कॉडर आधार बनाते हैं। एक विशेष उदाहरण के रूप में, संग्रह

एलपी स्पेस के लिए एक आधार बनाता है | एल2[0,1]।

यह भी देखें

संदर्भ

  • Itô, Kiyosi (1993). Encyclopedic Dictionary of Mathematics (2nd ed.). MIT Press. p. 1141. ISBN 0-262-59020-4.