संसाधन (रसायन विज्ञान)
संसाधन एक रासायनिक प्रक्रिया है जो बहुलक रसायन विज्ञान और प्रक्रिया अभियंता में नियोजित होती है जो बहुलक श्रृंखलाओं के तिर्यक् बंधन द्वारा बहुलक सामग्री को चर्मलन या कठोरण बनाती है। यहां तक कि अगर यह ताप स्थापन बहुलक के उत्पादन से दृढ़ता से जुड़ा हुआ है, तो संसाधन शब्द का उपयोग उन सभी प्रक्रियाओं के लिए किया जा सकता है जहां एक तरल समाधान से एक ठोस उत्पाद प्राप्त किया जाता है, जैसे कि पीवीसी प्लैस्टिसॉल के साथ प्राप्त किया जाता है।[1]
संसाधन प्रक्रिया
संसाधन प्रक्रिया के उपरान्त, एकल एकलक और ओलिगोमर, एक संसाधन घटक के साथ या बिना मिश्रित, एक त्रि-आयामी बहुलक संजाल बनाने के लिए प्रतिक्रिया करते हैं।[2]
प्रतिक्रिया के पहले भाग में विभिन्न शिल्प विद्या के साथ शाखन (बहुलक रसायन) बनते हैं, और उनका आणविक भार प्रतिक्रिया की सीमा के साथ समय के साथ बढ़ता है जब तक कि संजाल का आकार प्रणाली के आकार के बराबर नहीं हो जाता। प्रणाली ने अपनी घुलनशीलता खो दी है और इसकी चिपचिपाहट अनंत हो जाती है। शेष अणु स्थूलदर्शित संजाल के साथ तब तक सह-अस्तित्व में रहना प्रारम्भ करते हैं जब तक कि वे अन्य तिर्यकबंधन बनाने वाले संजाल के साथ प्रतिक्रिया नहीं करते। तिर्यकबंधन घनत्व तब तक बढ़ता है जब तक प्रणाली रासायनिक प्रतिक्रिया के अंत तक नहीं पहुंच जाता।[2]
संसाधन ऊष्मा, विकिरण, इलेक्ट्रॉन किरण या रासायनिक योजक द्वारा प्रेरित किया जा सकता है। आईयूपीएसी से उद्धृत करने के लिए: संसाधन के लिए रासायनिक संसाधन घटक के साथ मिश्रण की आवश्यकता हो सकती है या नहीं भी हो सकती है।[3] इस प्रकार, दो व्यापक वर्ग हैं (i) योगात्मक द्वारा प्रेरित संसाधन (जिन्हें संसाधन घटक, दृढ़ीकारक भी कहा जाता है) और (ii) बिना योगात्मक के संसाधन। एक मध्यवर्ती स्तिथि में राल और योगात्मक का मिश्रण सम्मिलित होता है जिसके लिए संसाधन को प्रेरित करने के लिए बाहरी उत्तेजना (प्रकाश, ऊष्मा, विकिरण) की आवश्यकता होती है।
संसाधन की पद्धति राल और अनुप्रयोग पर निर्भर करती है। संसाधन से प्रेरित संकोचन पर विशेष ध्यान दिया जाता है। सामान्यतः संकोचन के छोटे मान (2-3%) वांछनीय होते हैं।[1]
योगात्मक द्वारा प्रेरित संसाधन
[[image:DryOilSteps.svg|thumb|right|चित्र 3: सुखाने वाले तेल के संसाधन से जुड़े सरलीकृत रासायनिक प्रतिक्रियाएं। पहले चरण में, डीएन एक हाइड्रोपरॉक्साइड देने के लिए स्वतः उपचयन से पारित होता है। दूसरे चरण में, हाइड्रोपरॉक्साइड एक तिर्यकबंधन उत्पन्न करने के लिए एक अन्य असंतृप्त पार्श्व शृंखला के साथ जोड़ती है।[4] ऐपोक्सी सामान्यतः योगात्मक के उपयोग से ठीक हो जाते हैं, जिन्हें प्रायः दृढ़ीकारक कहा जाता है। पॉलीमाइन का प्रायः उपयोग किया जाता है। अमीन समूह एपॉक्साइड के छल्ले को वलय-विवर्त करते हैं।
रबड़ में, एक तिर्यकबंधन के अतिरिक्त संसाधन भी प्रेरित होता है। परिणामी प्रक्रिया को गंधक वल्कनीकरण कहा जाता है। बहुलक श्रृंखलाओं के वर्गों के बीच पॉलीसल्फ़ाइड तिर्यक्-बंधन (पुल) बनाने के लिए गंधक टूट जाता है। तिर्यकबंधन की घात कठोरता और स्थायित्व, साथ ही सामग्री के अन्य गुणों को निर्धारित करती है।[5] रंग और वार्निश में सामान्यतः तेल सुखाने वाले घटक होते हैं, सामान्यतः धातु के साबुन जो असंतृप्त सुखाने वाले तेलों के तिर्यक् बंधन को उत्प्रेरित करते हैं जो बड़े मापक्रम पर उन्हें सम्मिलित करते हैं। जब रंग को सुखाने के रूप में वर्णित किया जाता है तो यह वास्तव में तिर्यक् बंधन द्वारा दृढ़ीकरण होता है। रबर के वल्कनीकरण में गंधक द्वारा निभाई गई भूमिका के अनुरूप, ऑक्सीजन परमाणु तिर्यकबंधन के रूप में काम करते हैं।
योगात्मक के बिना संसाधन
ठोस के स्तिथि में, संसाधन में सिलिकेट तिर्यकबंधन का गठन होता है। प्रक्रिया योगात्मक से प्रेरित नहीं है।
कई स्तिथियों में, राल को तापीयतः सक्रियित उत्प्रेरक के साथ एक समाधान या मिश्रण के रूप में प्रदान किया जाता है, जो तिर्यकबंधन को केवल उष्मित होने पर प्रेरित करता है। उदाहरण के लिए, कुछ एक्रिलाट-आधारित रेजिन डिबेंज़ॉयल रसायनिक के साथ तैयार किए जाते हैं। मिश्रण को उष्मित करने पर, रसायनिक एक मुक्त कण में परिवर्तित हो जाता है, जो तिर्यकबंधन को प्रारम्भ करते हुए एक एक्रिलाट में जुड़ जाता है।
कुछ कार्बनिक रेजिन ऊष्मा से ठीक हो जाते हैं। जैसे ही ऊष्मा लागू की जाती है, तिर्यकबंधन को प्रारम्भ करने से पहले राल की चिपचिपाहट कम हो जाती है, जिससे घटक ओलिगोमर अन्तर्संबद्ध के रूप में बढ़ जाता है। यह प्रक्रिया तब तक जारी रहती है जब तक कि ओलिगोमेर श्रृंखलाओं का त्रिआयामी संजाल नहीं बन जाता - इस चरण को शीतपिंडन कहा जाता है। राल की प्रक्रियात्मकता के संदर्भ में यह एक महत्वपूर्ण चरण है: शीतपिंडन से पहले प्रणाली अपेक्षाकृत गतिशील है,इसके बाद गतिशीलता बहुत सीमित है, राल की सूक्ष्म संरचना और मिश्रित सामग्री निर्धारित हो गई है और आगे उपचार के लिए गंभीर प्रसार सीमाएं बनाई गई हैं।। इस प्रकार, राल में ग्लास संक्रमण को प्राप्त करने के लिए, सामान्यतः शीतपिंडन के बाद प्रक्रिया तापमान में वृद्धि करना आवश्यक होता है।
जब उत्प्रेरक पराबैंगनी विकिरण द्वारा सक्रिय होते हैं, तो प्रक्रिया को यूवी संसाधन कहा जाता है।[6]
अनुश्रवण प्रणाली
संसाधन अनुश्रवण, उदाहरण के लिए, समग्र सामग्री की निर्माण प्रक्रिया के नियंत्रण के लिए एक आवश्यक घटक है। प्रक्रिया के अंत में सामग्री, प्रारम्भ में तरल, ठोस होगी: श्यानता सबसे महत्वपूर्ण गुण है जो प्रक्रिया के उपरान्त बदलता है।
संसाधन की अनुश्रवण विभिन्न भौतिक या रासायनिक गुणों की अनुश्रवण पर निर्भर करती है।
प्रवाहिकीय विश्लेषण
श्यानता में परिवर्तन की अनुश्रवण करने का एक आसान तरीका, और इस प्रकार, एक संसाधन प्रक्रिया में प्रतिक्रिया की सीमा लोचदार प्रतिरूपक की भिन्नता को मापना है।[7]
संसाधन के उपरान्त एक प्रणाली के लोचदार मापांक को मापने के लिए, एक प्रवाहमापी का उपयोग किया जा सकता है।[7] गतिशील यांत्रिक विश्लेषण के साथ, गतिक यांत्रिक विश्लेषण संचयन प्रतिरूपक (G ') और गतिक यांत्रिक विश्लेषण क्षति प्रतिरूपक (G' ') को मापा जा सकता है। समय में G' और G की भिन्नता संसाधन की प्रतिक्रिया की सीमा को इंगित कर सकती है।[7]
जैसा कि चित्र 4 में दिखाया गया है, एक प्रेरण समय के बाद, G 'और G ढलान में अचानक परिवर्तन के साथ बढ़ने लगते हैं। एक निश्चित बिंदु पर वे एक दूसरे को पार करते हैं; बाद में, G' और G की दरें कम हो जाती हैं, और मोडुली एक स्थिरांक की ओर बढ़ जाती है। जब वे स्थिरांक पर पहुँचते हैं तो प्रतिक्रिया समाप्त हो जाती है।[2]
जब प्रणाली तरल होता है, तो भंडारण मापांक बहुत कम होता है: प्रणाली तरल की तरह व्यवहार करती है। फिर प्रतिक्रिया जारी रहती है और प्रणाली ठोस की तरह अधिक प्रतिक्रिया करना प्रारम्भ कर देता है: भंडारण मापांक बढ़ जाता है।
संसाधन की घात, , निम्नानुसार परिभाषित किया जा सकता है:[8]
संसाधन की घात शून्य से प्रारम्भ होती है (प्रतिक्रिया की प्रारम्भ में) और एक (प्रतिक्रिया के अंत) तक बढ़ती है। वक्र का ढलान समय के साथ बदलता है और प्रतिक्रिया के लगभग आधे हिस्से में उसका अधिकतम होता है।
ऊष्मीय विश्लेषण
यदि तिर्यकबंधन के उपरान्त होने वाली प्रतिक्रियाएं ऊष्माक्षेपी प्रतिक्रिया होती हैं, तो तिर्यकबंधन दर प्रक्रिया के उपरान्त जारी ऊष्मा से संबंधित हो सकती है। निर्मित रासायनिक आबंधों की संख्या जितनी अधिक होती है, अभिक्रिया में उतनी ही अधिक ऊष्मा मुक्त होती है। प्रतिक्रिया के अंत में, कोई और ऊष्मा जारी नहीं की जाएगी। ऊष्मा प्रवाह विभेदी क्रमवीक्षण कैलोरीमिति को मापने के लिए प्रयोग किया जा सकता है।[9]
यह मानते हुए कि तिर्यकबंधन के उपरान्त बनने वाला प्रत्येक रासायनिक बंधन समान मात्रा में ऊर्जा, संसाधन की घात जारी करता है, इस प्रकार परिभाषित किया जा सकता है:[9]
जहाँ एक निश्चित समय तक जारी की गई ऊष्मा है, ताप की तात्कालिक दर है और में जारी ऊष्मा की कुल मात्रा है, जब प्रतिक्रिया समाप्त हो जाती है।[9]
इसके अतिरिक्त इस स्तिथि में संसाधन की घात शून्य (कोई बंधन नहीं बनाया गया) से एक (कोई और प्रतिक्रिया नहीं होती) से एक ढलान के साथ जाती है जो समय में बदलती है और प्रतिक्रिया के आधे हिस्से में इसकी अधिकतम होती है।[9]
द्विवैद्युतमितीय विश्लेषण
पारम्परिक द्विवैद्युतमितीय सामान्यतः द्विवैद्युतमितीय संवेदक (धारिता जांच) के समानांतर पट्ट संरूपण में की जाती है और इसमें तरल से लेकर रबर तक ठोस अवस्था तक, पूरे चक्र में राल के संसाधन की अनुश्रवण करने की क्षमता होती है। यह एक रेशेदार प्रदर्शन के भीतर भी जटिल राल मिश्रणों के संसाधन में चरण पृथक्करण की अनुश्रवण करने में सक्षम है। वही विशेषताएँ परावैघ्दुत तकनीक के नवागत विकास अर्थात् माइक्रोडायइलेक्ट्रोमेट्री से संबंधित हैं।
परावैघ्दुत संवेदक के कई संस्करण व्यावसायिक रूप से उपलब्ध हैं। संसाधन अनुश्रवण अनुप्रयोगों में उपयोग के लिए सबसे उपयुक्त प्रारूप समतल अंतरांगुलि धारितीय संरचनाएं हैं जो उनकी सतह पर एक संवेदन संजाल रखती हैं। उनकी अभिकल्पना (विशेष रूप से स्थायी क्रियाधार पर) के आधार पर उनके पास कुछ पुन: प्रयोज्यता है, जबकि लचीले क्रियाधार संवेदक का उपयोग राल प्रणाली के थोक में अंतः स्थापित संवेदक के रूप में भी किया जा सकता है।
स्पेक्ट्रमिकी विश्लेषण
विभिन्न मापदंडों में परिवर्तन को मापकर संसाधन प्रक्रिया की अनुश्रवण की जा सकती है:
- स्पेक्ट्रमिकी का उपयोग कर विशिष्ट प्रतिक्रियाशील राल प्रजातियों की एकाग्रता जैसे फूरियर रूपांतरण अवरक्त स्पेक्ट्रमिकी और रमन स्पेक्ट्रमिकी;
- राल (दृक् संपत्ति) का अपवर्तक सूचकांक या प्रतिदीप्ति;
- रेशा ब्रैग कर्कश (एफबीजी) संवेदक के उपयोग के साथ आंतरिक राल उपभेद (सामग्री विज्ञान) (यांत्रिक संपत्ति)।
पराध्वनिक विश्लेषण
पराध्वनिक संसाधन की अनुश्रवण के तरीके पराध्वनिक के प्रसार की विशेषताओं में परिवर्तन और एक घटक के वास्तविक समय के यांत्रिक गुणों के बीच संबंधों पर आधारित होते हैं:
- उड़ान का पराध्वनिक समय, पारगामी-पारेषण और स्पंद-प्रतिध्वनि प्रणाली दोनों में;
- प्रभाव उत्तेजना और लेज़र-प्रेरित सतह ध्वनिक तरंग वेग माप का उपयोग करके प्राकृतिक आवृत्ति।
यह भी देखें
- वल्कनीकरण
- तिर्यक-बंध
संदर्भ
- ↑ 1.0 1.1 Pham, Ha Q.; Marks, Maurice J. (2012). "Epoxy Resins". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a09_547.pub2.
- ↑ 2.0 2.1 2.2 Chambon, Francois; Winter, H. Henning (November 1987). "असंतुलित स्टोइकोमेट्री के साथ एक क्रॉसलिंकिंग पीडीएमएस के जेल बिंदु पर रैखिक विस्कोलोच". Journal of Rheology. 31 (8): 683–697. Bibcode:1987JRheo..31..683C. doi:10.1122/1.549955.
- ↑ "इलाज". IUPAC Goldbook. 2014. doi:10.1351/goldbook.CT07137.
- ↑ Ulrich Poth (2002). "Drying Oils and Related Products". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a09_055.
{{cite encyclopedia}}
: CS1 maint: uses authors parameter (link) - ↑ James E. Mark, Burak Erman (eds.) (2005). रबर का विज्ञान और प्रौद्योगिकी. p. 768. ISBN 978-0-12-464786-2.
{{cite book}}
:|author=
has generic name (help) - ↑ Gregory T. Carroll, Nicholas J. Turro and Jeffrey T. Koberstein (2010) Patterning Dewetting in Thin Polymer Films by Spatially Directed Photocrosslinking Journal of Colloid and Interface Science, Vol. 351, pp 556-560 doi:10.1016/j.jcis.2010.07.070
- ↑ 7.0 7.1 7.2 Macosko, Christopher W. (1994). Rheology : principles, measurements, and applications. VCH. p. 568. ISBN 978-0-471-18575-8.
- ↑ 8.0 8.1 Harkous, Ali; Colomines, Gaël; Leroy, Eric; Mousseau, Pierre; Deterre, Rémi (April 2016). "The kinetic behavior of Liquid Silicone Rubber: A comparison between thermal and rheological approaches based on gel point determination". Reactive and Functional Polymers. 101: 20–27. doi:10.1016/j.reactfunctpolym.2016.01.020.
- ↑ 9.0 9.1 9.2 9.3 9.4 Hong, In-Kwon; Lee, Sangmook (January 2013). "कैनेटीक्स को ठीक करें और सिलिकॉन रबर की प्रतिक्रिया को मॉडलिंग करें". Journal of Industrial and Engineering Chemistry. 19 (1): 42–47. doi:10.1016/j.jiec.2012.05.006.
- Osswald, Tim A.; Menges, Georg (2003). Materials science of polymers for engineers. Hanser Verlag. pp. 334–335. ISBN 978-1-56990-348-3.
- Glöckner, Patrick (2009). Radiation Curing. Vincentz Network. pp. 11–16. ISBN 978-3-86630-907-4.
- I.Partridge and G.Maistros, ‘Dielectric Cure Monitoring for Process Control’, Chapter 17, Vol. 5, Encyclopaedia of Composite Materials (2001), Elsevier Science, London, page 413
- P.Ciriscioli and G.Springer, ‘Smart Autoclave cure in Composites’, (1991), Technomic Publishing, Lancaster, PA.