पूर्णांक आव्यूह

From Vigyanwiki
Revision as of 15:14, 30 October 2023 by Arti (talk | contribs) (Arti moved page पूर्णांक मैट्रिक्स to पूर्णांक आव्यूह without leaving a redirect)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणित में, पूर्णांक आव्यूह एक आव्यूह है जिसकी सभी प्रविष्टियाँ पूर्णांक हैं। उदाहरणों में द्विआधारी आव्यूह, शून्य आव्यूह, एक आव्यूह, तत्समक आव्यूह और आरेख सिद्धांत में उपयोग किए जाने वाले आसन्न आव्यूह आदि तथा इनके साथ साथ कई अन्य आव्यूह भी सम्मिलित हैं। साहचर्य में पूर्णांक आव्यूहों का उपयोग अत्यधिक होता है।

उदाहरण

और

पूर्णांक आव्यूह के दोनों उदाहरण हैं।

गुण

पूर्णांक आव्यूहों का व्युत्क्रमणीय आव्यूह गैर-पूर्णांक आव्यूह की तुलना में सामान्यतः संख्यात्मक रूप से अधिक स्थिर होता है। किसी पूर्णांक आव्यूह का डिटर्मिनेंट स्वयं एक पूर्णांक होता है, इस प्रकार एक व्युत्क्रमणीय पूर्णांक आव्यूह के डिटर्मिनेंट का संख्यात्मक रूप से सबसे छोटा संभव परिमाण एक होता है, इसलिए जहां व्युत्क्रम उपलब्ध होते हैं वे अत्यधिक बड़े नहीं होते हैं। आव्यूह से प्रमेय, जो डिटर्मिनेंट से गुणों का अनुमान लगाते हैं, इस प्रकार दोषपूर्ण आव्यूह वास्तविक संख्या या चर मान आव्यूहों द्वारा प्रेरित लैटिस से बचते हैं।

यदि किसी पूर्णाङ्क आव्यूह M का डिटर्मिनेंट 1 या -1 होता है तो आव्यूह M का अधिलेख पुनः एक पूर्णाङ्क आव्यूह होता है। डिटर्मिनेंट 1 के पूर्णाङ्क आव्यूह समूह का गठन करते हैं, जिसके अंकगणित और ज्यामिति में दूरगामी अनुप्रयोग हैं। के लिए यह प्रतिरूपक क्रमादेशन समूह से निकटता से संबंधित है।

लंबकोणीय समूह के साथ पूर्णांक आव्यूहों का प्रतिच्छेदन हस्ताक्षरित क्रमपरिवर्तन आव्यूहों का समूह है।

किसी पूर्णांक आव्यूह की विशेषता बहुपद में पूर्णांक गुणांक होते हैं। चूंकि एक आव्यूह के ऐगेन मान ​​​​इस बहुपद के फलन का समाधान हैं, एक पूर्णांक आव्यूह के ऐगेन मान ​​​​बीजगणितीय पूर्णांक हैं। एबेल-रफ़िनी प्रमेय के आयाम में, वे इस प्रकार एनवें समाधान द्वारा व्यक्त किए जा सकते हैं जिसमें पूर्णांक सम्मिलित हैं।

पूर्णांक आव्यूहों को कभी-कभी इंटीग्रल आव्यूह कहा जाता है, यद्यपि इस प्रयोग को प्रायः हतोत्साहित किया जाता है।

यह भी देखें

बाहरी संबंध