कण पुंज
कण किरण आवेशित या अनावेशित कणों की एक धारा है। कण त्वरणकारों में, ये कण प्रकाश की गति के निकट गति से चल सकते हैं। आवेशित कण किरण और अनावेशित कण किरण के निर्माण और नियंत्रण के मध्य अंतर है, क्योंकि विद्युत चुंबकत्व पर आधारित उपकरणों द्वारा केवल पहले प्रकार को पर्याप्त मात्रा में युक्तियोजित किया जा सकता है। कण त्वरक का उपयोग करके उच्च गतिज ऊर्जा पर आवेशित कण किरण का युक्तियोजन और निदान त्वरक भौतिकी के मुख्य विषय हैं।
स्रोत
आवेशित कण जैसे इलेक्ट्रॉन, पॉज़िट्रॉन और प्रोटॉन को उनके सामान्य परिवेश से अलग किया जा सकता है। इसे पूरा किया जा सकता है उदा। थर्मिओनिक उत्सर्जन या चाप निर्वहन। निम्नलिखित उपकरण आमतौर पर कण किरण के स्रोत के रूप में उपयोग किए जाते हैं:
- आयन स्रोत
- कैथोड रे ट्यूब, या अधिक विशेष रूप से इसके एक हिस्से में जिसे इलेक्ट्रॉन गन कहा जाता है। यह पारंपरिक टेलीविजन और कंप्यूटर स्क्रीन का भी हिस्सा है।
- फोटोकैथोड को इलेक्ट्रॉन गन के एक हिस्से के रूप में भी बनाया जा सकता है, प्रकाश विद्युत प्रभाव का उपयोग करके कणों को उनके सब्सट्रेट से अलग किया जा सकता है।[1]
- न्यूट्रॉन किरण ऊर्जावान प्रोटॉन किरण द्वारा बनाए जा सकते हैं जो किसी लक्ष्य पर प्रभाव डालते हैं, उदा। फीरोज़ा सामग्री की। (लेख कण चिकित्सा देखें)
- प्रोटॉन किरण बनाने के लिए पेटावाट लेजर को टाइटेनियम पन्नी पर फोड़ना.[2]
हेरफेर
त्वरण
चार्ज किए गए किरण को उच्च गुंजयमान यंत्र, कभी-कभी अतिचालक , माइक्रोवेव गुहा के उपयोग से और तेज किया जा सकता है। ये उपकरण विद्युत चुम्बकीय क्षेत्र के साथ संपर्क करके कणों को गति देते हैं। चूंकि हॉलो मैक्रोस्कोपिक, कंडक्टिंग उपकरणों की तरंग दैर्ध्य आकाशवाणी आवृति (RF) बैंड में होती है, ऐसे गुहाओं और अन्य RF उपकरणों का डिज़ाइन भी त्वरक भौतिकी का एक हिस्सा है।
हाल ही में, स्पंदित उच्च-शक्ति लेज़र सिस्टम की विकिरण ऊर्जा या अन्य आवेशित कणों की गतिज ऊर्जा का उपयोग करके, प्लाज्मा त्वरण एक प्लाज्मा (भौतिकी) माध्यम में कणों को गति देने की संभावना के रूप में उभरा है। यह तकनीक सक्रिय विकास के अधीन है, लेकिन वर्तमान में यह पर्याप्त गुणवत्ता के विश्वसनीय किरण प्रदान नहीं कर सकती है।
मार्गदर्शन
सभी मामलों में, किरण को द्विध्रुवीय चुम्बकों के साथ चलाया जाता है और चतुष्कोणीय चुम्बकों के साथ केंद्रित किया जाता है। प्रयोग में वांछित स्थिति और किरण स्पॉट आकार तक पहुंचने के अंतिम लक्ष्य के साथ।
अनुप्रयोग
उच्च-ऊर्जा भौतिकी
बड़ी सुविधाओं में कण भौतिकी प्रयोगों के लिए उच्च-ऊर्जा कण किरण का उपयोग किया जाता है; लार्ज हैड्रान कोलाइडर और टेवाट्रॉन सबसे आम उदाहरण हैं।
सिंक्रोट्रॉन विकिरण
एक्स-रे उत्पन्न करने के लिए सिंक्रोट्रॉन प्रकाश स्रोतों में इलेक्ट्रॉन किरण कार्यरत हैं | एक व्यापक आवृत्ति बैंड पर एक निरंतर स्पेक्ट्रम के साथ एक्स-रे विकिरण जिसे सिंक्रोट्रॉन विकिरण कहा जाता है। इस एक्स-रे विकिरण का उपयोग विभिन्न प्रकार के स्पेक्ट्रोस्कोपी (XAS, XANES, EXAFS, X-ray प्रतिदीप्ति|µ-XRF, X-ray क्रिस्टलोग्राफी|µ-XRD) के लिए सिंक्रोट्रॉन प्रकाश स्रोतों की beamline ों पर किया जाता है ताकि जांच की जा सके और ठोस पदार्थों और जैविक पदार्थों की संरचना और रासायनिक जाति उद्भवन की विशेषता बता सकेंगे।
कण चिकित्सा
कण चिकित्सा में कैंसर के उपचार के लिए प्रोटॉन, न्यूट्रॉन, या सकारात्मक आयनों (जिसे कण microbeam भी कहा जाता है) से युक्त ऊर्जावान कण किरण का उपयोग किया जा सकता है।
खगोल भौतिकी
खगोल भौतिकी में कई घटनाएं विभिन्न प्रकार के कण किरणों के लिए जिम्मेदार हैं।[3] सौर प्रकार III रेडियो फट, सूर्य से सबसे आम आवेगी रेडियो हस्ताक्षर, वैज्ञानिकों द्वारा सौर त्वरित इलेक्ट्रॉन किरण को बेहतर ढंग से समझने के लिए एक उपकरण के रूप में उपयोग किया जाता है।[4]
सैन्य
यूएस रक्षा अग्रिम जाँच परियोजनाएं एजेंसी ने 1958 में पार्टिकल किरण हथियारों पर काम शुरू किया।[5] इस तरह के हथियार का सामान्य विचार उच्च गतिज ऊर्जा वाले त्वरित कणों की एक धारा के साथ लक्ष्य वस्तु को हिट करना है, जिसे बाद में लक्ष्य के परमाणुओं, या अणुओं में स्थानांतरित किया जाता है। इस तरह के उच्च-शक्ति वाले किरण को प्रोजेक्ट करने के लिए आवश्यक शक्ति किसी भी मानक युद्धक्षेत्र पॉवरप्लांट की उत्पादन क्षमताओं से अधिक है,[5]इस प्रकार ऐसे हथियारों का निकट भविष्य में उत्पादन होने की उम्मीद नहीं है।
यह भी देखें
- इलेक्ट्रॉन किरण
- आयन किरण
- पोलर_जेट
संदर्भ
- ↑ T. J. Kauppila et al. (1987), A pulsed electron injector using a metal photocathode irradiated by an excimer laser, Proceedings of Particle Accelerator Conference 1987
- ↑ Petawatt proton beams at Lawrence Livermore
- ↑ Anthony Peratt (1988). "प्लाज्मा ब्रह्मांड में कण बीम और विद्युत धाराओं की भूमिका" (PDF). Laser and Particle Beams. 6 (3): 471–491. doi:10.1017/S0263034600005401. Retrieved 26 January 2023.
- ↑ Reid, Hamish Andrew Sinclair; Ratcliffe, Heather (July 2014). "सोलर टाइप III रेडियो बर्स्ट की समीक्षा". Research in Astronomy and Astrophysics. 14 (7): 773–804. arXiv:1404.6117. doi:10.1088/1674-4527/14/7/003. ISSN 1674-4527. S2CID 118446359.
- ↑ 5.0 5.1 Roberds, Richard M. (1984). "पार्टिकल-बीम वेपन का परिचय". Air University Review. July–August. Archived from the original on 2012-04-17. Retrieved 2005-01-03.