एक क्षेत्र विस्तार की डिग्री

From Vigyanwiki
Revision as of 12:38, 26 April 2023 by alpha>SprashM

गणित में, विशेष रूप से क्षेत्र सिद्धांत (गणित), क्षेत्र आयाम की डिग्री क्षेत्र आयाम के आकार की एक स्थूल माप है। अवधारणा गणित के कई भागों में एक महत्वपूर्ण भूमिका निभाती है, जिसमें अमूर्त बीजगणित और संख्या सिद्धांत सम्मिलित हैं - वास्तव में किसी भी क्षेत्रफल में जहां क्षेत्र (गणित) उत्कृष्ट रूप से उपस्थित होता है।

परिभाषा और संकेतन

मान लीजिए कि E/F एक क्षेत्र आयाम है। तब E को F (अदिशों के क्षेत्र) पर एक सदिश समष्टि माना जा सकता है। इस सदिश समष्टि के आयाम को क्षेत्र आयाम की डिग्री कहा जाता है, और इसे [E:F] द्वारा निरूपित किया जाता है।

डिग्री परिमित या अनंत हो सकती है, जिसके अनुसार क्षेत्र को परिमित आयाम या अनंत आयाम कहा जाता है। एक आयाम E/F को कभी-कभी केवल परिमित कहा जाता है यदि यह एक परिमित आयाम है तो इसे स्वयं परिमित क्षेत्र होने के साथ भ्रमित (परिमित रूप से कई अवयव वाले क्षेत्र) नहीं होना चाहिए।

डिग्री को किसी क्षेत्र की अबीजीयता की डिग्री के साथ भ्रमित नहीं होना चाहिए, उदाहरण के लिए, परिमेय फलन के क्षेत्र Q(X) में Q पर अनंत डिग्री है, लेकिन अबीजीयता की डिग्री केवल 1 के बराबर है।

डिग्री के लिए गुणन सूत्र

स्तम्भ में व्यवस्थित तीन क्षेत्रों को देखते हुए, K को L का एक उपक्षेत्र कहते हैं जो बदले में M का एक उपक्षेत्र है, तीन आयाम L/K, M/L और M/K की डिग्री के बीच एक सरल संबंध है:

दूसरे शब्दों में, "मूल" से "शीर्ष" क्षेत्र में जाने वाली डिग्री "मूल" से "मध्य" और फिर "मध्य" से "शीर्ष" तक जाने वाली डिग्री का गुणन है। यह लैग्रेंज के प्रमेय (समूह सिद्धांत) के अपेक्षाकृत अधिक अनुरूप है। जो एक समूह के क्रम को एक उपसमूह के क्रम और सूचकांक से संबंधित करता है - वास्तव में गैल्वा सिद्धांत से पता चलता है कि यह समानता सिर्फ एक संयोग से अधिक है।

सूत्र परिमित और अनंत डिग्री आयाम दोनों के लिए मान्य है। अनंत स्थिति में, गुणनफल की व्याख्या गणन संख्याओं के गुणनफल के अर्थ में की जाती है। विशेष रूप से, इसका अर्थ है कि यदि M/K परिमित है, तो M/L और L/K दोनों परिमित हैं।

यदि M/K सीमित है, तो सूत्र सरल अंकगणितीय विचारों के माध्यम से M और के बीच होने वाले क्षेत्रों के प्रकार पर प्रबल प्रतिबंध लगाता है। उदाहरण के लिए, यदि डिग्री [M:K] एक अभाज्य संख्या p है, तो किसी मध्यवर्ती क्षेत्र L के लिए, दो वस्तुओ में से एक हो सकती है: [M:L] = p और [L:K] = 1, जिसमें स्थिति L, K के समान है, या [M:L] = 1 और [L:K] = p, इस स्थिति में L, M के समान है। इसलिए, कोई (स्वयं M और K के अतिरिक्त) मध्यवर्ती क्षेत्र नहीं हैं।

परिमित स्थिति में गुणन सूत्र का प्रमाण

मान लीजिए कि K, L और M उपरोक्त डिग्री सूत्र के अनुसार क्षेत्रों का एक स्तम्भ बनाते हैं, और दोनों d = [L:K] और e = [M:L] परिमित हैं। इसका अर्थ है कि हम K के ऊपर L के लिए एक आधार {u1, ..., ud} और L के ऊपर M के लिए एक आधार {w1, ..., we} का चयन कर सकते हैं। हम दिखाएंगे कि umwn, m के लिए 1, 2, ..., d और n से लेकर 1, 2, ..., e तक के अवयव, M/K के लिए एक आधार बनाते हैं; चूंकि उनमें से निश्चित रूप से de हैं, यह प्रमाणित करता है कि M/K का आयाम de है, जो वांछित परिणाम है।

पहले हम जाँचते हैं कि वे M/K तक विस्तृत हैं। यदि x, M का कोई अवयव है, तो चूंकि wn, L पर M के लिए एक आधार बनाता है, हम ऐसे अवयव an को L में पा सकते हैं कि

तब, चूँकि um K पर L के लिए एक आधार बनाता है, हम K में अवयव bm,n इस प्रकार पा सकते हैं कि प्रत्येक n के लिए,

फिर M में वितरण नियम और गुणन की साहचर्यता का उपयोग करके हमने प्राप्त किया

जो दर्शाता है कि x, K से गुणांक वाले umwn का एक रैखिक संयोजन है; दूसरे शब्दों में, वे M के ऊपर K विस्तारित हैं।

दूसरे हमें यह जांचना चाहिए कि वे K पर रैखिक रूप से स्वतंत्र हैं। तो मान लीजिए

K में कुछ गुणांक bm,n के लिए पुनः वितरण और साहचर्य का प्रयोग करके, हम पदों को इस प्रकार समूहित कर सकते हैं

और हम देखते हैं कि कोष्ठकों में पद शून्य होना चाहिए, क्योंकि वे L और wn के अवयव हैं, L पर रैखिक रूप से स्वतंत्र हैं।

प्रत्येक n के लिए, चूंकि bm,n गुणांक K में हैं, और um K पर रैखिक रूप से स्वतंत्र हैं, हमारे पास bm,n = 0 सभी m और सभी n के लिए होना चाहिए। इससे पता चलता है कि K पर umwn के अवयव रैखिक रूप से स्वतंत्र हैं। यह प्रमाण का निष्कर्ष है।

अनंत स्थिति में सूत्र का प्रमाण

इस स्थिति में, हम क्रमशः L/K और M/L के आधार uα और wβ से प्रारंभ करते हैं, जहां α एक अनुक्रमणिका समुच्चय A से लिया जाता है, और एक अनुक्रमणिका समुच्चय B से β लिया जाता है। उपरोक्त तर्क के समान एक पूरी तरह से समान तर्क का उपयोग करते हुए, हम पाते हैं कि गुणनफल uαwβ, M/K के लिए आधार बनाते हैं। इन्हें कार्तीय गुणनफल A × B द्वारा अनुक्रमित किया जाता है, जिसकी परिभाषा के अनुसार A और B के गणनसंख्यात्मकता के गुणनफल के बराबर प्रमुखता है।

उदाहरण

  • सम्मिश्र संख्याएँ डिग्री [C:R] = 2 के साथ वास्तविक संख्याओं पर एक क्षेत्र आयाम हैं, और इस प्रकार उनके बीच कोई गैर-सामान्य क्षेत्र (गणित) नहीं हैं।
  • क्षेत्र आयाम Q (2, 3), जो 2 और 3 परिमेय संख्याओं के क्षेत्र Q से जोड़कर प्राप्त किया गया है जिसकी डिग्री 4 है, अर्थात, [Q(2, 3): Q] = 4 है। मध्यवर्ती क्षेत्र Q(√2) की डिग्री Q के ऊपर 2 है; हम गुणन सूत्र से यह निष्कर्ष निकालते हैं कि [Q(√2, √3):Q(√2)] = 4/2 = 2 है।
  • परिमित क्षेत्र (गैलोइस क्षेत्र) GF(125) = GF(53) की उपक्षेत्र GF(5) पर डिग्री 3 है। अधिक सामान्य रूप से, यदि p एक अभाज्य संख्या है और n, m धनात्मक पूर्णांक हैं जिसमें n विभाजित m है तो [GF(pm):GF(pn)] = m/n प्राप्त है।
  • क्षेत्र आयाम C(T)/C, जहां C(T), C पर परिमेय फलनो का क्षेत्र है, अनंत डिग्री है वास्तव में यह एक विशुद्ध रूप से अबीजीय विस्तार है। इसे यह देखकर देखा जा सकता है कि अवयव 1, T, T2, इत्यादि, C पर रैखिक रूप से स्वतंत्र हैं।
  • क्षेत्र विस्तार C(T2) की भी C से अधिक अनंत डिग्री है। हालाँकि, यदि हम C(T2) को C(T) के उपक्षेत्र के रूप में देखते हैं, तो वास्तव में [C(T):C(T2)] = 2 है। अधिक सामान्य रूप से, यदि X और Y एक क्षेत्र K पर बीजगणितीय वक्र हैं, और F : X → Y डिग्री d के उनके बीच एक विशेषण आकारिकी है, तो फलन क्षेत्र K(X) और K(Y) दोनों K पर अनंत डिग्री हैं, लेकिन डिग्री [K(X):K(Y)], d के समान हो जाती है।

सामान्यीकरण

E में निहित F के साथ दो विभाजन वलय E और F दिए गए हैं और F का गुणन और जोड़ E में संक्रियाओ का प्रतिबंध है, हम E को दो तरीकों से F पर एक सदिश समष्टि के रूप में मान सकते हैं: बाईं ओर अदिश कार्य करते हुए, एक आयाम [E:F]l देना, और उनसे दाहिनी ओर कार्य करवाना, एक आयाम [E:F]r देना। दो आयामों को सहमत होने की आवश्यकता नहीं है। हालांकि दोनों आयाम विभाजन के वलय के स्तंभों के लिए गुणन सूत्र को संतुष्ट करते हैं; ऊपर दिया गया प्रमाण बिना बदलाव के बाएं- अभिनीति अदिश पर प्रयुक्त होता है।

संदर्भ

  • page 215, Jacobson, N. (1985). Basic Algebra I. W. H. Freeman and Company. ISBN 0-7167-1480-9. Proof of the multiplicativity formula.
  • page 465, Jacobson, N. (1989). Basic Algebra II. W. H. Freeman and Company. ISBN 0-7167-1933-9. Briefly discusses the infinite dimensional case.