डिराक संलग्न

From Vigyanwiki
Revision as of 10:28, 27 April 2023 by alpha>Neeraja (added Category:Vigyan Ready using HotCat)

क्वांटम क्षेत्र सिद्धांत में, डायराक आसन्न स्पिनर के दोहरी वेक्टर अंतरिक्ष ऑपरेशन को परिभाषित करता है। डायराक, हर्मिटियन एडजॉइंट की सामान्य भूमिका के स्थान पर डायराक स्पिनर उचित प्रकार से, औसत अंकित की मात्रा बनाने की आवश्यकता से प्रेरित होता है।

संभवतः सामान्य हर्मिटियन संलग्नक के साथ भ्रम से बचने के लिए, कुछ पाठ्यपुस्तकें डायराक संलग्न के लिए नाम प्रदान नहीं करती हैं, किंतु इसे केवल ψ-बार कहते हैं।

परिभाषा

मान लीजिये डिराक स्पिनर हैं। फिर इसके डायराक आसन्न को परिभाषित किया गया है:-

जहाँ स्पिनर के हर्मिटियन आसन्न को दर्शाता है , और समय के जैसे गामा आव्यूह है।

लोरेंत्ज़ परिवर्तनों के अंतर्गत स्पिनर्स

विशेष सापेक्षता का लोरेंत्ज़ समूह कॉम्पैक्ट नहीं है, इसलिए लोरेंत्ज़ परिवर्तनों के स्पिनर प्रतिनिधित्व सामान्यतः एकात्मक संचालिका नहीं होते हैं। यदि कुछ लोरेंत्ज़ परिवर्तन का प्रक्षेप्य प्रतिनिधित्व है, तो

,

फिर, सामान्यतः,

स्पिनर का हर्मिटियन संलग्न इसके अनुसार रूपांतरित होता है:

इसलिए, लोरेंत्ज़ अदिश नहीं है और स्वयं संलग्न संकारक भी नहीं है।

इसके विपरीत, डायराक, के अनुसार रूपांतरित होता है:

.

पहचान का उपयोग , रूपांतरण कम हो जाता है:

,

इस प्रकार, लोरेंट्ज़ स्केलर के रूप में रूपांतरित होता है और चार-वेक्टर के रूप में रूपांतरित होता है ।

उपयोग

डायराक एडजॉइंट का उपयोग करते हुए, स्पिन-1/2 कण क्षेत्र के लिए प्रायिकता चार-वर्तमान J के रूप में लिखा जा सकता है:

जहां c प्रकाश की गति है और J के घटक संभाव्यता घनत्व ρ और प्रायिकता 3-वर्तमान j का प्रतिनिधित्व करते हैं:

.

μ = 0 और गामा मैट्रिसेस के लिए संबंध का उपयोग करना:

,

संभाव्यता घनत्व बन जाता है:

.

यह भी देखें

संदर्भ

  • B. Bransden and C. Joachain (2000). Quantum Mechanics, 2e, Pearson. ISBN 0-582-35691-1.
  • M. Peskin and D. Schroeder (1995). An Introduction to Quantum Field Theory, Westview Press. ISBN 0-201-50397-2.
  • A. Zee (2003). Quantum Field Theory in a Nutshell, Princeton University Press. ISBN 0-691-01019-6.