स्पिनिंग ड्रॉप विधि

From Vigyanwiki
Revision as of 17:05, 25 April 2023 by alpha>PreetiSingh

स्पिनिंग ड्रॉप विधि या रोटेटिंग ड्रॉप विधि उक्‍त तलों के मध्य तनाव को मापने के लिए उपयोग की जाने वाली विधियों में से है। चूँकि माप घूर्णन क्षैतिज ट्यूब में किया जाता है जिसमें घने तरल पदार्थ होते हैं। अतः कम घने तरल या गैस के बुलबुले की बूंद द्रव के अंदर रखी जाती है। चूँकि क्षैतिज ट्यूब का घूर्णन ट्यूब की दीवारों की ओर केन्द्रापसारक बल बनाता है, तरल बूंद लम्बी आकृति में ख़राब होने लगती है। यह बढ़ाव बंद हो जाता है जब उक्‍त तलों के मध्य तनाव और केन्द्रापसारक बल संतुलित होते हैं। इस प्रकार दो तरल पदार्थों (बुलबुले के लिए: द्रव और गैस के मध्य) के मध्य सतह तनाव को इस संतुलन बिंदु पर बूंद के आकार से प्राप्त किया जा सकता है। इस प्रकार के मापन के लिए उपयोग किए जाने वाले उपकरण को "स्पिनिंग ड्रॉप टेन्सियोमीटर" कहा जाता है।

स्पिनिंग ड्रॉप विधि सामान्यतः 10-2 mN/m से नीचे की सतह के तनाव के त्रुटिहीन माप के लिए पसंद की जाती है। यह या तो कम उक्‍त तलों के मध्य तनाव वाले तरल पदार्थों का उपयोग करने या बहुत अधिक कोणीय वेगों पर कार्य करने के लिए संदर्भित करता है। इस पद्धति का व्यापक रूप से अनेक भिन्न-भिन्न अनुप्रयोगों में उपयोग किया जाता है जैसे कि बहुलक मिश्रणों[1] और कॉपोलिमर के उक्‍त तलों के मध्य तनाव को मापा जाता है।[2]

सिद्धांत

तरल पदार्थ की सतह के तनाव को मापने के लिए सन्न 1942 में बर्नार्ड वोनगुट[3] द्वारा अनुमानित सिद्धांत विकसित किया गया था जो इस सिद्धांत पर आधारित है कि यांत्रिक संतुलन पर उक्‍त तलों के मध्य तनाव और केन्द्रापसारक बल संतुलित हैं। यह सिद्धांत मानता है कि छोटी बूंद की लंबाई L इसकी त्रिज्या R से बहुत अधिक है जिससे कि इसे सीधे गोलाकार सिलेंडर के रूप में अनुमानित किया जा सकता है।


Mine1.JPG

किसी छोटी बूंद के पृष्ठ तनाव और कोणीय वेग के मध्य के संबंध को विभिन्न विधियों से प्राप्त किया जा सकता है। उनमें से में छोटी बूंद की कुल यांत्रिक ऊर्जा को उसकी गतिज ऊर्जा और उसकी सतह ऊर्जा के योग के रूप में सम्मिलित करना सम्मिलित है।

लंबाई L और त्रिज्या R के सिलेंडर की गतिज ऊर्जा इसके केंद्रीय अक्ष के चारों ओर घूर्णन करता है।

जिसमें

अपनी केंद्रीय धुरी के चारों ओर घूमने वाले सिलेंडर की जड़ता का क्षण है और ω इसका कोणीय वेग है। अतः छोटी बूंद की सतह ऊर्जा द्वारा दिया जाता है।

जिसमें V छोटी बूंद का स्थिर आयतन है और σ अंतरापृष्ठीय तनाव है। तब छोटी बूंद की कुल यांत्रिक ऊर्जा है।

जिसमें Δρ छोटी बूंद और आसपास के द्रव के घनत्व के मध्य का अंतर है। अतः यांत्रिक संतुलन पर यांत्रिक ऊर्जा कम हो जाती है और इस प्रकार,

में स्थानापन्न करना,

सिलेंडर के लिए और फिर उक्‍त तलों के मध्य तनाव उत्पन्न के लिए इस संबंध को हल किया जाता है।

इस समीकरण को वोनगुट की अभिव्यक्ति के रूप में जाना जाता है। स्थिर अवस्था में किसी सिलिंडर के बहुत समीप आकार देने वाले किसी भी तरल के उक्‍त तलों के मध्य तनाव का अनुमान इस समीकरण का उपयोग करके लगाया जा सकता है। इस प्रकार सीधा बेलनाकार आकार हमेशा पर्याप्त उच्च ω के लिए विकसित होता है। यह सामान्यतः L/R > 4 के लिए होता है।[1] जब यह आकार विकसित हो जाता है तब आगे बढ़ते हुए ω मात्रा के संरक्षण को पूर्ण करने के लिए LR2 को स्थिर रखते हुए L को बढ़ाते हुए R को कम कर देता है।

1942 के पश्चात् के नए विकास

स्पिनिंग बूंदों के आकार पर पूर्ण गणितीय विश्लेषण प्रिंसेन और अन्य द्वारा किया गया था।[4] संख्यात्मक प्रारूप और उपलब्ध कंप्यूटिंग संसाधनों में प्रगति ने गैर रेखीय अंतर्निहित पैरामीटर समीकरणों को बहुत अधिक 'सामान्य' कार्य में परिवर्तित कर दिया जाता है जिसे विभिन्न लेखकों और कंपनियों द्वारा निपटाया गया है। अतः परिणाम सिद्ध कर रहे हैं कि वोनगुट प्रतिबंध अब स्पिनिंग ड्रॉप विधि के लिए मान्य नहीं है।

अन्य विधियों से तुलना

सामान्यतः उक्‍त तलों के मध्य तनाव प्राप्त करने के लिए अन्य व्यापक रूप से उपयोग की जाने वाली विधियों की तुलना में स्पिनिंग ड्रॉप विधि सुविधाजनक है जिससे कि संपर्क कोण माप की आवश्यकता नहीं है। इस प्रकार स्पिनिंग ड्रॉप विधि का अन्य लाभ यह है कि अंतराफलक पर वक्रता का अनुमान लगाना आवश्यक नहीं है जिसमें द्रव ड्रॉप के आकार से जुड़ी जटिलताएं सम्मिलित हैं।

दूसरी ओर वोनगुट द्वारा सुझाया गया है कि यह सिद्धांत घूर्णी वेग के साथ प्रतिबंधित है। इस प्रकार उच्च सतह तनाव माप के लिए स्पिनिंग ड्रॉप विधि से त्रुटिहीन परिणाम देने की उम्मीद नहीं है जिससे कि बेलनाकार आकार में बूंद को बनाए रखने के लिए आवश्यक केन्द्रापसारक बल उन तरल पदार्थों के स्थितियों में बहुत अधिक होता है जिनमें उच्च उक्‍त तलों के मध्य तनाव होता है।

संदर्भ

  1. 1.0 1.1 H.H. Hu; D.D. Joseph (1994). "स्पिनिंग ड्रॉप टेन्सियोमीटर में एक लिक्विड ड्रॉप इन ए का विकास". J. Colloid Interface Sci. 162 (2): 331–339. Bibcode:1994JCIS..162..331H. doi:10.1006/jcis.1994.1047.
  2. C. Verdier; H.T.M. Vinagre; M. Piau; D.D. Joseph (2000). "High temperature interfacial tension measurements of PA6/PP interfaces compatibilized with copolymers using a spinning drop tensiometer". Polymer. 41 (17): 6683–6689. doi:10.1016/S0032-3861(00)00059-8.
  3. B. Vonnegut (1942). "सतह और इंटरफेशियल तनाव के निर्धारण के लिए रोटेटिंग बबल विधि". Rev. Sci. Instrum. 13 (6): 6–9. Bibcode:1942RScI...13....6V. doi:10.1063/1.1769937.
  4. Princen, H; Zia, I; Mason, S (1967). "एक घूर्णन ड्रॉप के आकार से इंटरफेशियल तनाव का मापन". Journal of Colloid and Interface Science. 23 (1): 99–107. Bibcode:1967JCIS...23...99P. doi:10.1016/0021-9797(67)90090-2.