त्रिकोणासन (ज्यामिति)
This article does not cite any sources. (फ़रवरी 2023) (Learn how and when to remove this template message) |
ज्यामिति में, एक त्रिकोणासन एक तलीय ऑब्जेक्ट का त्रिभुजों में एक उपखंड है, और विस्तार से एक उच्च-आयाम ज्यामितीय वाली ज्यामितीय ऑब्जेक्ट का उपविभाजन सरलता में होता है। त्रि-आयामी आयतन के त्रिकोणासन में इसे एक साथ संकुलित किए गए चतुष्फलकी में उप-विभाजित करना सम्मिलित होगा।
ज्यादातर उदाहरणों में, त्रिकोणासन के त्रिभुजों को किनारे से किनारे और शीर्ष से शीर्ष तक मिलने की आवश्यकता होती है।
प्रकार
विभिन्न प्रकार के त्रिभुजों को परिभाषित किया जा सकता है, दोनों के आधार पर कि किस ज्यामितीय वस्तु को उप-विभाजित किया जाना है और उप-विभाजन कैसे निर्धारित किया जाता है।
- एक त्रिकोण का उपखण्ड है में -आयामी सरलताएं जैसे कि कोई भी दो संकेतन एक सामान्य फलक (किसी भी निचले आयाम का एक सिंप्लेक्स) में प्रतिच्छेद या बिल्कुल नहीं, और किसी भी बाध्य सेट में केवल परिमित रूप से कई सरलताओं को प्रतिच्छेद करता है . यही है, यह एक स्थानीय परिमित सरल जटिल है जो पूरे स्थान को कवर करता है।
- एक बिंदु-सेट त्रिभुज, यानी, बिंदुओं के असतत स्थान सेट का त्रिभुज , बिंदुओं के उत्तल पतवार का एक उपखंड है, जैसे कि कोई भी दो सरलताएं किसी भी आयाम के एक सामान्य चेहरे (ज्यामिति) में प्रतिच्छेद करती हैं या बिल्कुल नहीं और इस तरह कि सरलताओं के कोने का सेट समाहित होता है . अक्सर उपयोग किए जाने वाले और अध्ययन किए गए बिंदु सेट त्रिकोणासन में डेलाउने त्रिभुज (सामान्य स्थिति में बिंदुओं के लिए, सरलता का सेट जो एक खुली गेंद से परिचालित होता है जिसमें कोई इनपुट बिंदु नहीं होता है) और न्यूनतम-भार त्रिकोणासन (बिंदु सेट त्रिकोणासन के योग को कम करता है) सम्मिलित हैं। किनारे की लंबाई)।
- नक्शानवीसी में, एक त्रिकोणीय अनियमित नेटवर्क प्रत्येक बिंदु के लिए ऊंचाई के साथ-साथ द्वि-आयामी बिंदुओं के एक सेट का एक बिंदु सेट त्रिभुज है। समतल से प्रत्येक बिंदु को उसकी ऊँची ऊँचाई तक उठाने से त्रिभुज के त्रिभुज त्रि-आयामी सतहों में उठ जाते हैं, जो त्रि-आयामी भू-आकृति का एक अनुमान बनाते हैं।
- एक बहुभुज त्रिभुज एक दिए गए बहुभुज का एक उपखंड है जो किनारे से किनारे तक मिलता है, फिर से इस गुण के साथ कि त्रिकोण के कोने का सेट बहुभुज के कोने के सेट के साथ मेल खाता है। बहुभुज त्रिभुज रैखिक समय में पाए जा सकते हैं और कई महत्वपूर्ण ज्यामितीय एल्गोरिदम का आधार बन सकते हैं, जिसमें आर्ट गैलरी समस्या का एक सरल अनुमानित समाधान भी सम्मिलित है। विवश Delaunay त्रिभुज, Delaunay त्रिभुज का बिंदु सेट से पॉलीगॉन तक या अधिक सामान्य तौर पर, सीधे-सीधे रेखांकन के लिए, Delaunay त्रिभुज का एक अनुकूलन है।
- एक सतह त्रिभुज में त्रिभुजों का एक जाल होता है जिसमें दी गई सतह पर बिंदु होते हैं जो सतह को आंशिक रूप से या पूरी तरह से कवर करते हैं।
- परिमित तत्व विधि में, त्रिकोणासन का उपयोग अक्सर बहुभुज जाल के रूप में किया जाता है (इस मामले में, एक त्रिकोण जाल) एक संगणना के अंतर्गत। इस मामले में, त्रिभुजों को सिम्युलेटेड होने के लिए डोमेन का एक उपखंड बनाना चाहिए, लेकिन वर्टिकल को इनपुट बिंदुओं तक सीमित करने के बजाय, अतिरिक्त स्टेनर पॉइंट (कम्प्यूटेशनल ज्योमेट्री) को वर्टिकल के रूप में जोड़ने की अनुमति है। परिमित तत्व जाल के रूप में उपयुक्त होने के लिए, परिमित तत्व अनुकरण के विवरण पर निर्भर मानदंड के अनुसार, एक त्रिभुज में अच्छी तरह से आकार के त्रिकोण होने चाहिए (देखें Types_of_mesh#Mesh_quality); उदाहरण के लिए, कुछ विधियों के लिए आवश्यक है कि सभी त्रिकोण सही या तीव्र हों, जो बिना रुकावट वाले जाल बनाते हैं। कई मेशिंग तकनीकों को जाना जाता है, जिसमें Delaunay शोधन एल्गोरिदम जैसे च्यू का दूसरा एल्गोरिदम और रुपर्ट का एल्गोरिदम सम्मिलित है।
- अधिक सामान्य टोपोलॉजिकल स्पेस में, किसी स्पेस का ट्राइएंगुलेशन (टोपोलॉजी) सामान्य तौर पर सिंपलियल कॉम्प्लेक्स को संदर्भित करता है जो स्पेस के लिए होमियोमॉर्फिक होते हैं।
सामान्यीकरण
त्रिकोणासन की अवधारणा को कुछ हद तक त्रिभुजों से संबंधित आकृतियों में उपविभाजनों के लिए सामान्यीकृत किया जा सकता है। विशेष रूप से, एक बिंदु सेट का एक छद्मत्रिकोण बिंदुओं के उत्तल पतवार का एक विभाजन है जो स्यूडोट्राएंगल्स में होता है - बहुभुज, जो त्रिभुजों की तरह, ठीक तीन उत्तल कोने होते हैं। बिंदु सेट त्रिभुज के रूप में, दिए गए इनपुट बिंदुओं पर स्यूडोट्रायंगुलेशन के लिए उनके शीर्ष होने की आवश्यकता होती है।