मोडुली (भौतिकी)

From Vigyanwiki

क्वांटम क्षेत्र सिद्धांत में मोडुली (या अधिक उचित रूप से मोडुली क्षेत्र ) शब्द का उपयोग कभी-कभी अदिश क्षेत्र को संदर्भित करने के लिए किया जाता है, जिनके संभावित ऊर्जा कार्य में ग्लोबल मिनिमा के निरंतर परिवार होते हैं। ऐसे संभावित कार्य ज्यादातर सुपरसिमेट्री प्रणाली में होते हैं। "मॉड्यूलस" शब्द को गणित से लिया गया है (या अधिक विशेष रूप से मोडुली अंतराल बीजगणितीय ज्यामिति से उधार लिया गया है) जहां इसे "पैरामीटर" के साथ समानार्थी रूप से प्रयोग किया जाता है। मोडुली शब्द (जर्मन में मॉडुलन) पहली बार 1857 में बर्नहार्ड रीमैन के प्रसिद्ध समाचार-पत्र "थ्योरी डेर एबेल्सचेन फंक्शनेन" में दिखाई दिया।[1]


क्वांटम क्षेत्र सिद्धांतों में मॉडुलि स्पेस

क्वांटम क्षेत्र सिद्धांतों में संभावित वैकुआ को आमतौर पर स्केलर फ़ील्ड्स के वैक्यूम अपेक्षा मूल्यों द्वारा लेबल किया जाता है, क्योंकि लोरेंत्ज़ इनवेरियन किसी भी उच्च स्पिन फ़ील्ड्स के वैक्यूम एक्सपेक्टेशन वैल्यू को गायब करने के लिए मजबूर करता है। ये निर्वात अपेक्षा मान कोई भी मान ले सकते हैं जिसके लिए संभावित कार्य न्यूनतम है। नतीजतन, जब संभावित कार्य में वैश्विक मिनिमा के निरंतर परिवार होते हैं, तो क्वांटम क्षेत्र सिद्धांत के लिए वैकुआ का स्थान कई गुना (या ऑर्बिफोल्ड) होता है, जिसे आमतौर पर वैक्यूम मैनिफोल्ड कहा जाता है।[2] इस मैनिफोल्ड को अक्सर वैकुआ का मॉडुलि स्पेस या शॉर्ट के लिए मॉडुलि स्पेस कहा जाता है।

मोडुली शब्द का उपयोग स्ट्रिंग थ्योरी में विभिन्न निरंतर मापदंडों को संदर्भित करने के लिए भी किया जाता है जो संभावित स्ट्रिंग पृष्ठभूमि को लेबल करते हैं: तनु क्षेत्र की अपेक्षा मूल्य, पैरामीटर (जैसे त्रिज्या और जटिल संरचना) जो कॉम्पैक्टिफिकेशन मैनिफोल्ड के आकार को नियंत्रित करते हैं, वगैरह . इन मापदंडों को क्वांटम क्षेत्र सिद्धांत में दर्शाया गया है, जो कम ऊर्जा पर स्ट्रिंग सिद्धांत का अनुमान लगाता है, ऊपर वर्णित उपयोग के साथ संपर्क बनाते हुए द्रव्यमान रहित स्केलर क्षेत्रों के वैक्यूम अपेक्षा मूल्यों द्वारा। स्ट्रिंग थ्योरी में, "मॉड्यूली स्पेस" शब्द का प्रयोग अक्सर विशेष रूप से सभी संभावित स्ट्रिंग पृष्ठभूमि के स्थान को संदर्भित करने के लिए किया जाता है।

सुपरसिमेट्रिक गेज थ्योरी के मोडुली स्पेस

सामान्य क्वांटम क्षेत्र सिद्धांतों में, भले ही शास्त्रीय संभावित ऊर्जा को संभावित अपेक्षाओं के बड़े सेट पर कम से कम किया जाता है, एक बार क्वांटम सुधार शामिल किए जाने पर यह सामान्य रूप से मामला है कि लगभग सभी कॉन्फ़िगरेशन ऊर्जा को कम करने के लिए बंद हो जाते हैं। नतीजा यह है कि क्वांटम यांत्रिकी के रिक्तिका का सेट आमतौर पर शास्त्रीय सिद्धांत की तुलना में बहुत छोटा होता है। एक उल्लेखनीय अपवाद तब होता है जब प्रश्न में विभिन्न रिक्तिकाएं समरूपता से संबंधित होती हैं जो गारंटी देती है कि उनके ऊर्जा स्तर बिल्कुल खराब रहते हैं।

सुपरसिमेट्री क्वांटम फील्ड थ्योरी में स्थिति बहुत अलग है। सामान्य तौर पर, इनमें वैक्यूम के बड़े मोडुली स्थान होते हैं जो किसी भी समरूपता से संबंधित नहीं होते हैं, उदाहरण के लिए, मॉड्यूलि स्पेस पर विभिन्न उत्तेजनाओं के द्रव्यमान विभिन्न बिंदुओं पर भिन्न हो सकते हैं। सुपरसिमेट्रिक गेज सिद्धांतों के मोडुली रिक्त स्थान सामान्य रूप से गैर-सुपरसिमेट्रिक सिद्धांतों की तुलना में गणना करने में आसान होते हैं क्योंकि क्वांटम सुधार शामिल होने पर भी सुपरसिमेट्री मोडुली स्पेस की अनुमत ज्यामिति को प्रतिबंधित करता है।

4-आयामी सिद्धांतों के अनुमत मॉड्यूलि स्थान

जितना अधिक सुपरसममेट्री है, वैक्यूम मैनिफोल्ड पर प्रतिबंध उतना ही मजबूत है इसलिए, यदि सुपरचार्ज के स्पिनरों की दी गई संख्या N के लिए एक प्रतिबंध नीचे दिखाई देता है, तो यह N के सभी बड़े मूल्यों के लिए भी लागू होता है।

एन = 1 सिद्धांत ===

मॉड्यूलि स्पेस की ज्यामिति पर पहला प्रतिबंध 1979 में ब्रूनो जुमिनो द्वारा पाया गया था और सुपरसिमेट्री और काहलर मैनिफोल्ड्स लेख में प्रकाशित हुआ था। उन्होंने वैश्विक सुपरसममिति के साथ 4-आयामों में एक N=1 सिद्धांत पर विचार किया। N=1 का अर्थ है कि सुपरसिमेट्री बीजगणित के फर्मीओनिक घटकों को एकल मेजराना सुपरचार्ज में इकट्ठा किया जा सकता है। इस तरह के सिद्धांत में एकमात्र स्केलर चिरल सुपरफील्ड के जटिल स्केलर हैं। उन्होंने पाया कि इन अदिशों के लिए अनुमत निर्वात अपेक्षा मूल्यों का निर्वात कई गुना न केवल जटिल है बल्कि एक काहलर कई गुना भी है।

यदि गुरुत्वाकर्षण को सिद्धांत में शामिल किया जाता है, ताकि स्थानीय सुपरसिमेट्री हो, तो परिणामी सिद्धांत को अतिगुरुत्वाकर्षण सिद्धांत कहा जाता है और मॉड्यूलि स्पेस की ज्यामिति पर प्रतिबंध मजबूत हो जाता है। मोडुली स्पेस केवल काहलर ही नहीं होना चाहिए, बल्कि काहलर फॉर्म को इंटीग्रल कोहोलॉजी तक उठाना चाहिए। ऐसे मैनिफोल्ड्स को हॉज मैनिफोल्ड्स कहा जाता है। पहला उदाहरण 1979 के लेख स्पॉन्टेनियस सिमेट्री ब्रेकिंग एंड हिग्स इफेक्ट इन सुपरग्रेविटी विदाउट कॉस्मोलॉजिकल कॉन्स्टेंट में दिखाई दिया और सामान्य कथन 3 साल बाद न्यूटन के कॉन्स्टेंट इन सर्टेन सुपरग्रेविटी थ्योरीज में दिखाई दिया।

एन = 2 सिद्धांत ===

एन = 2 सुपरसिमेट्री के साथ विस्तारित 4-आयामी सिद्धांतों में, एकल डायराक स्पिनर सुपरचार्ज के अनुरूप, स्थितियां अधिक मजबूत होती हैं। N=2 सुपरसिमेट्री बीजगणित में स्केलर के साथ दो प्रतिनिधित्व सिद्धांत शामिल हैं, वेक्टर सुपरफ़ील्ड जिसमें एक जटिल स्केलर और hypermultiple होता है जिसमें दो जटिल स्केलर होते हैं। सदिश गुणकों के मॉडुलि स्थान को कूलम्ब शाखा कहा जाता है जबकि हाइपरमल्टीप्लेट्स को हिग्स शाखा कहा जाता है। कुल मोडुली स्थान स्थानीय रूप से इन दो शाखाओं का एक उत्पाद है, क्योंकि सुपरसिमेट्री नॉनरेनॉर्मलाइजेशन प्रमेय का अर्थ है कि प्रत्येक का मीट्रिक अन्य मल्टीप्लेट के क्षेत्रों से स्वतंत्र है। (उदाहरण के लिए Argyres देखें, ~argyrepc/cu661-gr-SUSY/fgilec.pdf स्थानीय उत्पाद संरचना की आगे की चर्चा के लिए चार-आयामी सुपरसिमेट्रिक फील्ड सिद्धांतों की गैर-प्रतिस्पर्धी गतिशीलता, पीपी। 6-7।)

वैश्विक एन = 2 सुपरसिमेट्री के मामले में, दूसरे शब्दों में गुरुत्वाकर्षण की अनुपस्थिति में, मॉड्यूलि स्पेस की कूलम्ब शाखा एक विशेष काहलर मैनिफोल्ड है। इस प्रतिबंध का पहला उदाहरण 1984 के लेख General Gauged N=2 Supergravity: Yang-Mills Models में बर्नार्ड ऑफ व्हिट और एंटोनी वैन प्रोयेन द्वारा प्रकाशित किया गया था, जबकि अंतर्निहित ज्यामिति का एक सामान्य ज्यामितीय विवरण, जिसे विशेष ज्यामिति कहा जाता है, एंड्रयू स्ट्रोमिंगर द्वारा अपने 1990 के पेपर Special Geometry में प्रस्तुत किया गया था।

हिग्स शाखा एक हाइपरकैहलर मैनिफोल्ड है जैसा कि लुइस अल्वारेज़ गौम और डैनियल जेड फ्रीडमैन ने अपने 1981 के पेपर सुपरसिमेट्रिक सिग्मा मॉडल में ज्यामितीय संरचना और पराबैंगनी परिमितता में दिखाया था। गुरुत्वाकर्षण सहित सुपरसिममेट्री स्थानीय हो जाती है। फिर किसी को उसी हॉज की स्थिति को विशेष कहलर कूलम्ब शाखा में जोड़ने की जरूरत है जैसा कि एन = 1 मामले में है। जोनाथन बैगर और एडवर्ड विटन ने अपने 1982 के पेपर मैटर कपलिंग्स इन N=2 सुपरग्रेविटी में प्रदर्शित किया कि इस मामले में, हिग्स शाखा को क्वाटरनियोनिक काहलर मैनिफोल्ड होना चाहिए।

N>2 सुपरसममिति

N>2 के साथ विस्तारित सुपरग्रेविटी में मोडुली स्पेस हमेशा एक सममित स्पेस होना चाहिए।

संदर्भ

  1. Bernhard Riemann, Journal für die reine und angewandte Mathematik, vol. 54 (1857), pp. 101-155 "Theorie der Abel'schen Functionen".
  2. Teerthal, Patel (2022-01-16). "इलेक्ट्रोवीक चुंबकीय मोनोपोल और चुंबकीय क्षेत्र के लिए किबल तंत्र". Journal of High Energy Physics. Arizona State University. 2022 (1): 10. arXiv:2108.05357. Bibcode:2022JHEP...01..059P. doi:10.1007/JHEP01(2022)059. S2CID 256034831.