रोगोवस्की कॉइल
वाल्टर रोगोव्स्की के नाम पर रोगोस्की कुंडली, प्रत्यावर्ती धारा को मापना या उच्च गति धारा नाड़ी को मापने के लिए एक विद्युत उपकरण है। इसमें कभी-कभी तार का कुंडलित वक्रता कुंडली होता है, जिसके छोर से लीड कुंडली के केंद्र से होकर दूसरे छोर तक लौटता है, जिससे कि दोनों टर्मिनल कुंडली के एक ही सिरे पर हों। इस दृष्टिकोण को कभी-कभी 'प्रति-घाव' रोगोस्की के रूप में संदर्भित किया जाता है।
अन्य दृष्टिकोण पूर्ण टोरॉयड ज्यामिति का उपयोग करते हैं जिसमें केंद्रीय उत्तेजना का लाभ होता है न कि कुंडली में रोमांचक खड़ी तरंगें। पूरी असेंबली को सीधे संवाहक के चारों ओर लपेटा जाता है जिसका धारा मापा जाना है। कोई धातु लोहा का अन्तर्भाग नहीं है। वाइंडिंग का घनत्व, कुंडली का व्यास और वाइंडिंग की कठोरता बाहरी क्षेत्रों के लिए प्रतिरक्षा को संरक्षित करने और मापन संवाहक की स्थिति के लिए कम संवेदनशीलता के लिए महत्वपूर्ण हैं।[1][2][3]
चूंकि कुंडली में प्रेरित वोल्टेज सीधे संवाहक में धारा के परिवर्तन (व्युत्पन्न) की दर के समानुपाती होता है, रोगोस्की कुंडली का आउटपुट सामान्यतः उत्पादन में संकेत प्रदान करने के लिए विद्युतीय (या इलेक्ट्रॉनिक) जोड़ने वाला परिपथ से जुड़ा होता है, जो धारा के समानुपाती होता है। अंकीय परिवर्त्तक के लिए अंतर्निहित एनालॉग वाले एकल चिप संकेत संसाधित्र अधिकांशतः इस उद्देश्य के लिए उपयोग किए जाते हैं।[2]इसे आउटपुट के साथ समानांतर में कम अधिष्ठापन रोकनेवाला रखकर स्व-एकीकृत जैसे, कोई बाहरी परिपथ नहीं भी बनाया जा सकता है।[1]यह दृष्टिकोण संवेदन परिपथ को अधिक शोर प्रतिरोधी भी बनाता है।
लाभ
इस प्रकार के कुंडली में अन्य प्रकार के धारा ट्रांसफॉर्मर के लाभ हैं।
- यह बंद लूप नहीं है, क्योंकि दूसरा टर्मिनल वापस टॉरॉयड अन्तर्भाग सामान्यतः प्लास्टिक या रबर नली के केंद्र के माध्यम से पारित किया जाता है और पहले टर्मिनल के साथ जुड़ा होता है। यह कुंडली को खुला समाप्त और लचीला होने की अनुमति देता है, जिससे इसे लाइव संवाहक के चारों ओर बिना परेशान किए लपेटा जा सकता है। चूंकि, उस स्थितियों में मापा संवाहक की स्थिति महत्वपूर्ण है। यह दिखाया गया है कि, लचीले सेंसर के साथ, त्रुटिहीनता पर स्थिति का प्रभाव 1 से 3% तक होता है। अन्य प्रविधि त्रुटिहीन लॉकिंग तंत्र के साथ दो कठोर घुमावदार भागों का उपयोग करती है।[3]
- इसकी कम प्रेरण के कारण, यह कई नैनोसेकंड तक तेजी से बदलती धाराओं का उत्तर दे सकता है।[4]
- क्योंकि इसमें संतृप्त करने के लिए कोई लोहे का अन्तर्भाग नहीं है, यह बड़ी धाराओं के अधीन होने पर भी अत्यधिक रैखिक है, जैसे कि विद्युत शक्ति संचरण, वेल्डिंग, या स्पंदित बिजली अनुप्रयोगों में उपयोग किया जाता है।[4]यह रैखिकता उच्च-धारा रोगोस्की कुंडली को बहुत छोटे संदर्भ धाराओं का उपयोग करके कैलिब्रेट करने में सक्षम बनाती है।[2]
- माध्यमिक वाइंडिंग के खुलने का कोई खतरा नहीं।[4]
- कम निर्माण लागत।[4]
- तापमान क्षतिपूर्ति सरल है।[2]
- बड़े धारा के लिए पारंपरिक धारा ट्रांसफॉर्मर को आउटपुट धारा को स्थिर रखने के लिए द्वितीयक मोड़ की संख्या में वृद्धि की आवश्यकता होती है। इसलिए, बड़े धारा के लिए रोगोस्की कुंडली समतुल्य रेटिंग धारा ट्रांसफॉर्मर से छोटा होता है।[5]
हानि
इस प्रकार कुंडली के अन्य प्रकार के धारा ट्रांसफॉर्मर पर कुछ हानि भी हैं।
- धारा तरंग प्राप्त करने के लिए कुंडली का आउटपुट समाकलक परिपथ के माध्यम से पारित किया जाना चाहिए। समाकलक परिपथ को शक्ति की आवश्यकता होती है, सामान्यतः 3 से 24Vडीसी और कई वाणिज्यिक सेंसर इसे बैटरी से प्राप्त करते हैं।[6]
- पारंपरिक विभाजन-अन्तर्भाग धारा ट्रांसफॉर्मर को समाकलक परिपथ की आवश्यकता नहीं होती है। समाकलक हानिपूर्ण है, इसलिए रोगोस्की कुंडली में डीसी के लिए अनुक्रिया नहीं होती है, न ही पारंपरिक धारा ट्रांसफॉर्मर (डीसी के लिए नील प्रभाव कुंडली्स देखें)। चूंकि, वे 1 Hz और उससे कम आवृत्ति घटकों के साथ बहुत धीमी गति से बदलती धाराओं को माप सकते हैं।[3]
अनुप्रयोग
त्रुटिहीन वेल्डिंग प्रणाली, आर्क पिघलने वाली भट्टी, या विद्युत चुम्बकीय लांचर में धारा पर्यवेक्षण के लिए रोगोस्की कुंडली का उपयोग किया जाता है। उनका उपयोग विद्युत जनित्र के लघु-परिपथ परीक्षण और विद्युत संयंत्रों की सुरक्षा प्रणालियों में सेंसर के रूप में भी किया जाता है। उपयोग का अन्य क्षेत्र उनकी उच्च रैखिकता के कारण हार्मोनिक धारा सामग्री का मापन है।[6]
सूत्र
रोगोवस्की कुंडली द्वारा उत्पादित वोल्टेज है
कहाँ
- छोटे लूपों में से का क्षेत्र है,
- घुमावों की संख्या है,
- घुमावदार की लंबाई है (अंगूठी की परिधि),
- लूप में धारा थ्रेडिंग के परिवर्तन की दर है,
- वाल्ट ·दूसरा /(एम्पेयर ·मीटर) मुक्त स्थान की पारगम्यता है,
- टोरॉयड की प्रमुख त्रिज्या है,
- इसकी छोटी त्रिज्या है।
यह सूत्र मानता है कि घुमाव समान दूरी पर हैं और ये घुमाव कुंडल की त्रिज्या के सापेक्ष छोटे हैं।
रोगोस्की कुंडली का आउटपुट वायर धारा के डेरिवेटिव के समानुपाती होता है। आउटपुट अधिकांशतः एकीकृत होता है इसलिए आउटपुट तार के धारा के समानुपाती होता है:
व्यवहार में, उपकरण हानिपूर्ण समाकलक का उपयोग ब्याज की न्यूनतम आवृत्ति से बहुत कम समय के साथ करेगा। हानिपूर्ण समाकलक ऑफ़सेट वोल्टेज के प्रभाव को कम करेगा और एकीकरण की निरंतरता को शून्य पर सेट करेगा।
उच्च आवृत्तियों पर, रोगोव्स्की कुंडली का इंडक्शन इसके आउटपुट को कम कर देगा।
टॉरॉयड का इंडक्शन है[7]
समान उपकरण
1887 में ब्रिस्टल विश्वविद्यालय के आर्थर प्रिंस चैटॉक द्वारा रोगोस्की कुंडली के समान उपकरण का वर्णन किया गया था।[8] चट्टॉक ने इसका उपयोग धाराओं के बजाय चुंबकीय क्षेत्र को मापने के लिए किया। 1912 में वाल्टर रोगोव्स्की और डब्ल्यू स्टीनहॉस द्वारा निश्चित विवरण दिया गया था।[9] हाल ही में, रोगोस्की कुंडली के सिद्धांत पर आधारित कम लागत वाले धारा सेंसर विकसित किए गए हैं।[10] ये सेंसर रोगोस्की कुंडली के सिद्धांतों को साझा करते हैं, जो बिना चुंबकीय अन्तर्भाग वाले ट्रांसफॉर्मर का उपयोग करके धारा के परिवर्तन की दर को मापते हैं। पारंपरिक रोगोस्की कुंडली से अंतर यह है कि सेंसर को टॉरॉयडल कुंडली के बजाय प्लानर कुंडली का उपयोग करके निर्मित किया जा सकता है। सेंसर के माप क्षेत्र के बाहर कंडक्टरों के प्रभाव को अस्वीकार करने के लिए, ये प्लानर रोगोस्की धारा सेंसर बाहरी क्षेत्रों की प्रतिक्रिया को सीमित करने के लिए टॉरॉयडल ज्यामिति के बजाय गाढ़ा कुंडली ज्यामिति का उपयोग करते हैं। प्लानर रोगोस्की धारा सेंसर का मुख्य लाभ यह है कि कम लागत वाले मुद्रित परिपथ बोर्ड निर्माण का उपयोग करके त्रुटिहीनता के लिए आवश्यक कुंडली वाइंडिंग परिशुद्धता प्राप्त की जा सकती है।
यह भी देखें
- बालिसोर, उपकरण जो चुंबकीय क्षेत्र के बजाय विद्युत क्षेत्र से ऊर्जा प्राप्त करता है
- चालू बिजली)
- र्तमान ट्रांसफार्मर
- इलेक्ट्रॉनिक्स लेखों का सूचकांक
- स्पंदित शक्ति
- Toroidal inductors और ट्रांसफार्मर
- धारा संवेदन
संदर्भ
- ↑ 1.0 1.1 D.G. Pellinen, M.S. DiCipua, S.E. Sampayan, H. Gerbracht, and M. Wang, "Rogowski coil for measuring fast, highlevel pulsed currents," Rev.Sci.Instr. 51, 1535 (1980); http://dx.doi.org/10.1063/1.1136119.
- ↑ 2.0 2.1 2.2 2.3 John G. Webster, Halit Eren (ed.), Measurement, Instrumentation, and Sensors Handbook, Second Edition: Electromagnetic, Optical, Radiation, Chemical, and Biomedical Measurement, CRC Press, 2014, ISBN 1-439-84891-2, pp. 16-6 to 16-7.
- ↑ 3.0 3.1 3.2 Klaus Schon, High Impulse Voltage and Current Measurement Techniques: Fundamentals – Measuring Instruments – Measuring Methods, Springer Science & Business Media, 2013, ISBN 3-319-00378-X, p. 193.
- ↑ 4.0 4.1 4.2 4.3 Slawomir Tumanski, Handbook of Magnetic Measurements, CRC Press, 2011, ISBN 1-439-82952-7, p. 175.
- ↑ Stephen A. Dyer, Wiley Survey of Instrumentation and Measurement, John Wiley & Sons, 2004, ISBN 0-471-22165-1, p. 265.
- ↑ 6.0 6.1 Krzysztof Iniewski, Smart Sensors for Industrial Applications, CRC Press, 2013, ISBN 1-466-56810-0, p. 346.
- ↑ "Toroid Inductor Formulas and Calculator".
- ↑ "On a magnetic potentiometer", Philosophical Magazine and Journal of Science, vol. XXIV, no. 5th Series, pp. 94–96, Jul-Dec 1887
- ↑ Walter Rogowski and W. Steinhaus in "Die Messung der magnetischen Spannung", Archiv für Elektrotechnik, 1912, 1, Pt.4, pp. 141–150.
- ↑ Patent for a planar Rogowski current sensor U.S. Patent 6,414,475, granted 2 Jul 2002.
बाहरी संबंध
- रोगोस्की Coils Archived 2009-09-20 at the Wayback Machine, Using रोगोस्की Coils for Transient Current Measurements Archived 2016-03-04 at the Wayback Machine, Rocoil Ltd Operating Principle Archived 2016-03-04 at the Wayback Machine
- रोगोस्की Coil Designs, PAC World, Autumn 2007, protection relaying applications
- Miniature Wideband Current Probe sensor using this principle
- PEM UK रोगोस्की current transducer theory
- An Overview of रोगोस्की Coil Current Sensing Technology