निर्देशित समुच्चय

From Vigyanwiki

गणित में, एक निर्देशित समुच्चय (या निर्देशित पूर्वक्रमी या निस्यंदित समुच्चय) जो प्रतिवर्त और सकर्मक द्विआधारी संबंध (अर्थात, एक पूर्वक्रमी), अतिरिक्त गुण कि तत्वों की प्रत्येक जोड़ी की ऊपरी सीमा होती है, के साथ एक अरिक्त समुच्चय (गणित) है।[1] दूसरे शब्दों में, में किसी और के लिए वहाँ और साथ में उपस्थित होना चाहिए। एक निर्देशित समुच्चय के पूर्वक्रमी को दिशा कहा जाता है।

ऊपर परिभाषित धारणा को कभी-कभी ऊर्ध्वमुखी (ऊपर की ओर) निर्देशित समुच्चय कहा जाता है। अधोमुखी (नीचे की ओर) निर्देशित समुच्चय को समान रूप से परिभाषित किया गया है,[2] जिसका अर्थ है कि तत्वों की प्रत्येक जोड़ी नीचे परिबद्ध है।[3] कुछ लेखक (और यह लेख) मानते हैं कि एक निर्देशित समुच्चय ऊपर की ओर निर्देशित होता है, जब तक कि अन्यथा न कहा गया हो। अन्य लेखक समुच्चय को निर्देशित केवल तभी कहते हैं यदि यह ऊपर और नीचे दोनों ओर निर्देशित हो।[4]

निर्देशित समुच्चय अरिक्त संपूर्णतया क्रमित समुच्चय का सामान्यीकरण है। अर्थात्, सभी संपूर्णतया क्रमित समुच्चय निर्देशित समुच्चय हैं (अंशतः क्रमित समुच्चय के विपरीत , जिन्हें निर्देशित करने की आवश्यकता नहीं है)। संयुक्त-अर्ध-जाली (जो आंशिक रूप से क्रमित समुच्चय हैं) भी निर्देशित समुच्चय हैं, लेकिन इसके विपरीत नहीं। इसी तरह, जाली ऊपर और नीचे दोनों ओर निर्देशित समुच्चय हैं।

सांस्थिति में, नेट (जालक) को परिभाषित करने के लिए निर्देशित समुच्चय का उपयोग किया जाता है, जो अनुक्रमों को सामान्य करता है और गणितीय विश्लेषण में उपयोग की जाने वाली सीमा (गणित) की विभिन्न धारणाओं को एकजुट करता है। निर्देशित समुच्चय अमूर्त बीजगणित और (अधिक सामान्यतः) श्रेणी सिद्धांत में प्रत्यक्ष सीमा को जन्म देते हैं।

समतुल्य परिभाषा

उपरोक्त परिभाषा के अतिरिक्त, एक समतुल्य परिभाषा भी है। निर्देशित समुच्चय एक पूर्वक्रमी के साथ एक समुच्चय है जैसे कि प्रत्येक परिमित उपसमुच्चय की एक ऊपरी सीमा है। इस परिभाषा में, रिक्त समुच्चय की ऊपरी सीमा का अर्थ है कि अरिक्त नहीं है।

उदाहरण

प्राकृतिक संख्याओं का समुच्चय साधारण क्रमित के साथ निर्देशित समुच्चय के सबसे महत्वपूर्ण उदाहरणों में से एक है (और ऐसा ही प्रत्येक कुल क्रमित है)। परिभाषा के अनुसार, ए net एक निर्देशित समुच्चय से एक फ़ंक्शन है और अनुक्रम (गणित) प्राकृतिक संख्याओं से एक फ़ंक्शन है प्रत्येक अनुक्रम विहित रूप से एंडोइंग द्वारा एक जाल बन जाता है साथ आंशिक रूप से ऑर्डर किए गए समुच्चय का ए (तुच्छ) उदाहरण हैnot निर्देशित समुच्चय है जिसमें केवल क्रम संबंध हैं और एक कम तुच्छ उदाहरण की ओर निर्देशित वास्तविक के पिछले उदाहरण की तरह है लेकिन जिसमें क्रमित देने का नियम केवल उसी तरफ तत्वों के जोड़े पर लागू होता है (अर्थात, यदि कोई तत्व लेता है के बाईं ओर और इसके दाईं ओर, फिर और तुलनीय नहीं हैं, और उपसमुच्चय कोई ऊपरी सीमा नहीं है)।

अगर एक वास्तविक संख्या है तो समुच्चय परिभाषित करके एक निर्देशित समुच्चय में परिवर्तित किया जा सकता है अगर (इसलिए बड़े तत्व करीब हैं ). फिर हम कहते हैं कि वास्तविक को निर्देशित किया गया है यह एक निर्देशित समुच्चय का एक उदाहरण है जो है neither आंशिक क्रमित और न ही कुल क्रमित। ऐसा इसलिए है क्योंकि हर जोड़ी के लिए एंटीसिमेट्रिक_रिलेशन टूट जाता है और से समान दूरी पर कहाँ और के विपरीत हैं स्पष्ट रूप से, ऐसा तब होता है जब कुछ असली के लिए किस स्थिति में और चाहे क्या इस पूर्व क्रमित को परिभाषित किया गया था के बजाय तो यह अभी भी एक निर्देशित समुच्चय बनायेगा लेकिन अब इसमें एक (अद्वितीय) सबसे बड़ा तत्व होगा, विशेष रूप से ; फिर भी, यह अभी भी आंशिक रूप से क्रमितित नहीं होगा। इस उदाहरण को एक मीट्रिक स्थान के लिए सामान्यीकृत किया जा सकता है पर परिभाषित करके या अग्रिम क्रमित अगर और केवल अगर


अधिकतम और सबसे बड़ा तत्व

तत्व एक पूर्वक्रमीित समुच्चय का यदि प्रत्येक के लिए एक अधिकतम और न्यूनतम तत्व है तात्पर्य [5] यदि प्रत्येक के लिए यह एक महानतम तत्व और सबसे कम तत्व है सबसे बड़े तत्व के साथ कोई भी पूर्वक्रमी किया गया समुच्चय उसी पूर्वक्रमी के साथ एक निर्देशित समुच्चय है। उदाहरण के लिए, एक poset में हर ऊपरी समुच्चय#ऊपरी बंद और किसी तत्व का निचला बंद होना; यानी फॉर्म का हर उपसमुच्चय कहाँ से स्थिर तत्व है निर्देश दिया गया है।

निर्देशित पूर्वनिर्धारित समुच्चय का प्रत्येक अधिकतम तत्व सबसे बड़ा तत्व है। वास्तव में, एक निर्देशित पूर्ववर्ती समुच्चय अधिकतम और सबसे बड़े तत्वों के (संभवतः खाली) समुच्चयों की समानता की विशेषता है।

निर्देशित समुच्चय का उत्पाद

होने देना और निर्देशित समुच्चय हो। फिर कार्टेशियन उत्पाद समुच्चय परिभाषित करके एक निर्देशित समुच्चय में बनाया जा सकता है अगर और केवल अगर और उत्पाद क्रम के अनुरूप यह कार्टेशियन उत्पाद पर उत्पाद की दिशा है। उदाहरण के लिए, समुच्चय परिभाषित करके प्राकृतिक संख्याओं के जोड़े को एक निर्देशित समुच्चय में बनाया जा सकता है अगर और केवल अगर और


उपसमुच्चयसमावेशन

उपसमुच्चयसमावेशन संबंध इसके द्वैत (क्रमित सिद्धांत) के साथ समुच्चय के किसी दिए गए परिवार पर आंशिक ऑर्डर परिभाषित करें। आंशिक क्रम के संबंध में समुच्चय का एक अरिक्त परिवार एक निर्देशित समुच्चय है (क्रमश, ) अगर और केवल अगर इसके किसी भी दो सदस्यों के चौराहे (क्रमशः, संघ) में किसी तीसरे सदस्य के उपसमुच्चय(क्रमशः, एक उपसमुच्चयके रूप में शामिल है) के रूप में शामिल है। प्रतीकों में, एक परिवार समुच्चय के संबंध में निर्देशित किया जाता है (क्रमश, ) अगर और केवल अगर

सभी के लिए कुछ उपस्थित है ऐसा है कि और (क्रमश, और )

या समकक्ष,

सभी के लिए कुछ उपस्थित है ऐसा है कि (क्रमश, ).

इन आंशिक क्रमितों का उपयोग करके निर्देशित समुच्चयों के कई महत्वपूर्ण उदाहरणों को परिभाषित किया जा सकता है। उदाहरण के लिए, परिभाषा के अनुसार, एक फ़िल्टर (समुच्चय सिद्धांत) |prefilter या filter base समुच्चय का एक गैर-रिक्त परिवार है जो आंशिक क्रम के संबंध में एक निर्देशित समुच्चय है और उसमें भी खाली समुच्चय नहीं है (यह स्थिति तुच्छता को रोकती है क्योंकि अन्यथा, खाली समुच्चय तब सबसे बड़ा तत्व होगा और कम से कम तत्व के संबंध में ). हर पीआई-सिस्टम |π-सिस्टम, जो समुच्चय का एक गैर-रिक्त परिवार है जो इसके दो सदस्यों के चौराहे के नीचे बंद है, एक निर्देशित समुच्चय है जिसके संबंध में प्रत्येक Dynkin system|λ-system के संबंध में एक निर्देशित समुच्चय है प्रत्येक फ़िल्टर (समुच्चय सिद्धांत), सांस्थिति (संरचना), और σ-बीजगणित दोनों के संबंध में एक निर्देशित समुच्चय है और अगर एक निर्देशित समुच्चय से कोई नेट (गणित) है फिर किसी भी इंडेक्स के लिए समुच्चय की पूँछ कहलाती है पे शुरुवात परिवार सभी पूंछों के संबंध में एक निर्देशित समुच्चय है वास्तव में, यह एक प्रीफ़िल्टर भी है।

अगर एक टोपोलॉजिकल स्पेस है और में एक बिंदु है के सभी टोपोलॉजिकल पड़ोस का समुच्चय लिखकर निर्देशित समुच्चय में बदला जा सकता है अगर और केवल अगर रोकना हरएक के लिए और  :

  • तब से खुद को शामिल करता है।
  • अगर और तब और जो ये दर्शाता हे इस प्रकार
  • क्योंकि और दोनों के बाद से और अपने पास और

समुच्चय एक समुच्चय के सभी परिमित उपसमुच्चय के संबंध में निर्देशित किया गया है चूँकि कोई दो दिया है उनका संघ की ऊपरी सीमा है और में इस विशेष निर्देशित समुच्चय का उपयोग योग को परिभाषित करने के लिए किया जाता है एक की एक सामान्यीकृत श्रृंखला (गणित) की संख्याओं का अनुक्रमित संग्रह (या अधिक आम तौर पर, श्रृंखला का योग (गणित) एबेलियन टोपोलॉजिकल ग्रुप समूह एबेलियन टोपोलॉजिकल समूह, जैसे कि श्रृंखला (गणित) # एक टोपोलॉजिकल वेक्टर स्पेस में टोपोलॉजिकल वेक्टर रिक्त स्थान में श्रृंखला) आंशिक रकम के जाल की सीमा के रूप में वह है:


सेमीलेटिस के साथ तुलना करें

एक निर्देशित समुच्चय का उदाहरण जो संयुक्त-अर्ध-जाल नहीं है।

निर्देशित समुच्चय अर्ध-जाल (ज्वाइन) की तुलना में अधिक सामान्य अवधारणा है: प्रत्येक संयुक्त अर्ध-जाल एक निर्देशित समुच्चय है, क्योंकि दो तत्वों का जुड़ाव या न्यूनतम ऊपरी सीमा अपेक्षित है। लेकिन इसका विपरीत नहीं है, निर्देशित समुच्चय {1000,0001,1101,1011,1111} समन्वय क्रम (जैसे है, लेकिन नहीं, क्योंकि अंतिम बिट 1 > 0) में, जहां {1000,0001} की तीन ऊपरी सीमाएं हैं लेकिन न्यूनतम ऊपरी सीमा नहीं है, cf. चित्र। (यह भी ध्यान दें कि 1111 के बिना, समुच्चय निर्देशित नहीं है।)

निर्देशित उपसमुच्चय

निर्देशित समुच्चय में क्रमित संबंध को प्रतिसममित होने की आवश्यकता नहीं है, और इसलिए निर्देशित समुच्चय हमेशा आंशिक क्रमित नहीं होते हैं। फिर भी, निर्देशित समुच्चय शब्द का उपयोग आंशिकतः क्रमित समुच्चय के संदर्भ में प्रायः किया जाता है। इस समायोजना में, आंशिक रूप से क्रमित समुच्चय का उपसमुच्चय निर्देशित उपसमुच्चय कहा जाता है यदि यह एक ही आंशिक क्रम के अनुसार निर्देशित समुच्चय है: दूसरे शब्दों में, यह खाली समुच्चय नहीं है, और तत्वों की प्रत्येक जोड़ी की ऊपरी सीमा होती है। यहाँ के तत्वों पर क्रम संबंध से आनुवंसिक है ; इस कारण से, प्रतिवर्तनीयता और सकर्मकता को स्पष्ट होना आवश्यक नहीं है।

किसी आंशिकतः क्रमित समुच्चय के निर्देशित उपसमुच्चय को नीचे की ओर बंद करने की आवश्यकता नहीं है; एक आंशिकतः क्रमित समुच्चय का उपसमुच्चय निर्देशित किया जाता है अगर और केवल अगर इसका डाउनवर्ड संवरण एक आदर्श (ऑर्डर थ्योरी) है। जबकि एक निर्देशित समुच्चय की परिभाषा ऊपर की ओर निर्देशित समुच्चय के लिए है (तत्वों की प्रत्येक जोड़ी की ऊपरी सीमा होती है), नीचे की ओर निर्देशित समुच्चय को परिभाषित करना भी संभव है जिसमें प्रत्येक जोड़ी तत्वों की एक सामान्य निचली सीमा होती है। आंशिकतः क्रमित समुच्चय का उपसमुच्चय नीचे की ओर निर्देशित होता है अगर और केवल अगर इसका ऊपरी संवरण एक फ़िल्टर (निस्यंदक) है।

डोमेन सिद्धांत में निर्देशित उपसमुच्चय का उपयोग किया जाता है, जो निर्देशित-पूर्ण आंशिकतः क्रमित का अध्ययन करता है।[6] ये आंशिकतः क्रमित समुच्चय हैं जिनमें प्रत्येक ऊपर की ओर निर्देशित समुच्चय को न्यूनतम ऊपरी बाउंड होना आवश्यक है। इस संदर्भ में, निर्देशित उपसमुच्चय फिर से अभिसरण अनुक्रमों का सामान्यीकरण प्रदान करते हैं।[further explanation needed]

यह भी देखें

टिप्पणियाँ

  1. Kelley, p. 65.
  2. Robert S. Borden (1988). उन्नत पथरी में एक कोर्स. Courier Corporation. p. 20. ISBN 978-0-486-15038-3.
  3. Arlen Brown; Carl Pearcy (1995). विश्लेषण का एक परिचय. Springer. p. 13. ISBN 978-1-4612-0787-0.
  4. Siegfried Carl; Seppo Heikkilä (2010). ऑर्डर किए गए सेट और एप्लिकेशन में फिक्स्ड पॉइंट थ्योरी: डिफरेंशियल और इंटीग्रल इक्वेशन से लेकर गेम थ्योरी तक. Springer. p. 77. ISBN 978-1-4419-7585-0.
  5. This implies if is a partially ordered set.
  6. Gierz, p. 2.


संदर्भ

  • J. L. Kelley (1955), General Topology.
  • Gierz, Hofmann, Keimel, et al. (2003), Continuous Lattices and Domains, Cambridge University Press. ISBN 0-521-80338-1.