जोन्स कैलकुलस
प्रकाशिकी में, ध्रुवीकृत प्रकाश को 1941 में आरसी जोन्स द्वारा खोजे गए जोन्स कैलकुलस का उपयोग करके वर्णित किया जा सकता है। [1] ध्रुवीकृत प्रकाश को जोन्स वेक्टर द्वारा दर्शाया गया है, और रैखिक प्रकाशीय तत्वों को जोन्स मैट्रिक्स (गणित) द्वारा दर्शाया गया है। जब प्रकाश एक प्रकाशीय तत्व को पार करता है तो प्रकाशीय तत्व के जोन्स मैट्रिक्स और घटना प्रकाश के जोन्स वेक्टर के उत्पाद को लेकर उभरती हुई रोशनी का परिणामी ध्रुवीकरण पाया जाता है। ध्यान दें कि जोन्स कैलकुस केवल उस प्रकाश पर प्रयुक्त होता है जो पहले से ही पूरी तरह से ध्रुवीकृत है। प्रकाश जो अनायास ढंग से ध्रुवीकृत है, आंशिक रूप से ध्रुवीकृत है, या असंगत है, उसे मुलर कैलकुलस का उपयोग करके व्यवहार किया जाना चाहिए।
जोन्स वेक्टर
जोन्स वेक्टर मुक्त स्थान में प्रकाश के ध्रुवीकरण का वर्णन करता है या एक अन्य सजातीय आइसोट्रोपिक गैर-क्षीणन माध्यम जहां प्रकाश को ठीक से अनुप्रस्थ तरंगों के रूप में वर्णित किया जा सकता है। मान लीजिए कि प्रकाश की एक एकवर्णी समतल तरंग धनात्मक z-दिशा में कोणीय आवृत्ति ω और तरंग सदिश'k' = (0,0,k) के साथ यात्रा कर रही है, जहाँ तरंग संख्या k = ω/c है। फिर बिजली और चुंबकीय क्षेत्र ई और एच प्रत्येक बिंदु पर ऑर्थोगोनल हैं; वे दोनों गति की दिशा में "अनुप्रस्थ" तल में स्थित हैं। इसके अतिरिक्त 'H' को 'E' से 90 डिग्री रोटेशन और माध्यम के तरंग प्रतिबाधा के आधार पर एक निश्चित गुणक द्वारा निर्धारित किया जाता है। तो 'E' का अध्ययन करके प्रकाश का ध्रुवीकरण निर्धारित किया जा सकता है। 'E' का जटिल आयाम लिखा गया है
ध्यान दें कि भौतिक E क्षेत्र इस सदिश का वास्तविक भाग है; जटिल गुणक चरण सूचना का कार्य करता है। यहाँ के साथ काल्पनिक इकाई है
जोन्स वेक्टर है
इस प्रकार, जोन्स वेक्टर x और y दिशाओं में विद्युत क्षेत्र के आयाम और चरण का प्रतिनिधित्व करता है।
जोन्स वैक्टर के दो घटकों के पूर्ण मानो के वर्गों का योग प्रकाश की तीव्रता के समानुपाती होता है। सरलीकरण के लिए गणना के प्रारंभिक बिंदु पर इसे 1 पर सामान्यीकृत करना सामान्य बात है। जोन्स वैक्टर के पहले घटक को वास्तविक संख्या होने के लिए विवश करना भी सामान्य है। यह अन्य बीम के साथ हस्तक्षेप (तरंग प्रसार) की गणना के लिए आवश्यक समग्र चरण की जानकारी को छोड़ देता है।
ध्यान दें कि इस लेख में सभी जोन्स वैक्टर और मेट्रिसेस उस सम्मेलन को नियोजित करते हैं जिसके द्वारा प्रकाश तरंग का चरण दिया जाता है , हेचट द्वारा उपयोग किया जाने वाला एक सम्मेलन। इस सम्मेलन के तहत, (या ) में वृद्धि चरण में मंदता (विलंब) इंगित करता है, जबकि कमी चरण में आगे बढ़ने का संकेत देती है। उदाहरण के लिए, जोन्स वैक्टर का घटक () द्वारा मंदता को इंगित करता है (या 90 डिग्री) 1 की तुलना में (). जोन्स कन्वेंशन के तहत वर्णित परिपत्र ध्रुवीकरण को कहा जाता है: प्राप्त करने के दृष्टिकोण से। कॉलेट चरण के लिए विपरीत परिभाषा का उपयोग करता है (). कॉलेट की परिपाटी के अंतर्गत वर्णित वृत्ताकार ध्रुवीकरण कहलाता है : स्रोत की दृष्टि से। जोन्स कैलकुस पर संदर्भों से परामर्श करते समय पाठक को सम्मेलन की पसंद से सावधान रहना चाहिए।
निम्न तालिका सामान्यीकृत जोन्स वैक्टर के 6 सामान्य उदाहरण देती है।
ध्रुवीकरण | जोन्स सदिश | विशिष्ट केट नोटेशन |
---|---|---|
x दिशा में रैखिक ध्रुवीकरण
सामान्यतः "क्षैतिज" कहा जाता है |
||
वाई दिशा में रैखिक ध्रुवीकरण
सामान्यतः "ऊर्ध्वाधर" कहा जाता है |
||
x अक्ष से 45 डिग्री पर रैखिक ध्रुवीकरण
सामान्यतः "विकर्ण" L+45 कहा जाता है |
||
x अक्ष से -45° पर रैखिक ध्रुवीकरण
सामान्यतः "एंटी-डायगोनल" L−45 कहा जाता है |
||
दाहिने हाथ का गोलाकार ध्रुवीकरण
सामान्यतः "आरसीपी" या "आरएचसीपी" कहा जाता है |
||
बाएं हाथ का गोलाकार ध्रुवीकरण
सामान्यतः "एलसीपी" या "एलएचसीपी" कहा जाता है |
एक सामान्य वेक्टर जो सतह पर किसी भी स्थान को इंगित करता है उसे ब्रा-केट अंकन के रूप में लिखा जाता है . पोंकारे स्फेयर (ऑप्टिक्स) | पोंकारे स्फीयर (जिसे बलोच क्षेत्र के रूप में भी जाना जाता है) को नियोजित करते समय, आधार केट्स ( और ) ऊपर सूचीबद्ध कीट्स के विरोधी (एंटीपोडल अंक ) जोड़े को सौंपा जाना चाहिए। उदाहरण के लिए, कोई = और = . असाइन कर सकता है ये कार्य इच्छानुसार हैं। विरोधी जोड़ियाँ हैं
- और
- और
- और
किसी भी बिंदु का ध्रुवीकरण या के सामान्य नहीं है और उस वृत्त पर नहीं है जो के माध्यम से गुजरता है, अंडाकार ध्रुवीकरण के रूप में जाना जाता है।
जोन्स मेट्रिसेस
जोन्स मेट्रिसेस ऑपरेटर हैं जो ऊपर परिभाषित जोन्स वैक्टर पर कार्य करते हैं। ये मैट्रिसेस विभिन्न प्रकाशीय तत्वों जैसे लेंस, बीम स्प्लिटर्स, मिरर आदि द्वारा कार्यान्वित किए जाते हैं। प्रत्येक मैट्रिक्स जोन्स वैक्टर के एक-आयामी जटिल उप-स्थान पर प्रक्षेपण का प्रतिनिधित्व करता है। निम्न तालिका पोलराइज़र के लिए जोन्स मेट्रिसेस का उदाहरण देती है:
प्रकाशीय तत्व | जोन्स मैट्रिक्स |
---|---|
संचरण क्षैतिज के अक्ष के साथ रैखिक ध्रुवीकरण [2] |
|
संचरण वर्टिकल की धुरी के साथ रैखिक ध्रुवीकरण [2] |
|
क्षैतिज के साथ ±45° पर संचरण के अक्ष के साथ रैखिक ध्रुवीकरण [2] |
|
क्षैतिज से संचरण कोण 𝜃 की धुरी के साथ रैखिक ध्रुवीकरण [2] |
|
सही गोलाकार ध्रुवीकरण [2] |
|
वाम परिपत्र ध्रुवीकरण[2] |
|
चरण मंदक
एक चरण मंदक एक प्रकाशीय तत्व है जो प्रकाश के एक मोनोक्रोमैटिक ध्रुवीकृत बीम के दो ऑर्थोगोनल ध्रुवीकरण घटकों के बीच एक चरण अंतर उत्पन्न करता है।[3] गणितीय रूप से, जोन्स वैक्टर का प्रतिनिधित्व करने के लिए ब्रा-केट अंकन का उपयोग करते हुए, इसका अर्थ है कि एक चरण मंदक की क्रिया प्रकाश को ध्रुवीकरण के साथ बदलना है
- को
- जहाँ ओर्थोगोनल ध्रुवीकरण घटक हैं (अर्थात ) जो चरण मंदक की भौतिक प्रकृति द्वारा निर्धारित होते हैं। सामान्यतः, ऑर्थोगोनल घटक कोई भी दो आधार वैक्टर हो सकते हैं। उदाहरण के लिए, परिपत्र फेज मंदक की क्रिया ऐसी होती है कि
चूंकि , रैखिक चरण मंदक, जिसके लिए रैखिक ध्रुवीकरण हैं, सामान्यतः चर्चा और व्यवहार में अधिक पाए जाते हैं। वास्तव में, कभी-कभी शब्द चरण मंदक का उपयोग विशेष रूप से रैखिक चरण मंदक को संदर्भित करने के लिए किया जाता है।
रैखिक चरण मंदक सामान्यतः केल्साइट, एमजीएफ2 जैसे द्विअक्षीय एक अक्षीय क्रिस्टल से बने होते हैं या क्वार्ट्ज। इस प्रयोजन के लिए इन सामग्रियों से बनी प्लेटों को वेवप्लेट कहा जाता है। एक अक्षीय क्रिस्टल में एक क्रिस्टल अक्ष होता है जो अन्य दो क्रिस्टल अक्षों से भिन्न होता है (अर्थात., ni ≠ nj = nk). इस अनूठी धुरी को असाधारण धुरी कहा जाता है और इसे क्रिस्टल के प्रकाशिकी अक्ष के रूप में भी जाना जाता है। हाथ में क्रिस्टल के आधार पर एक प्रकाशिकी अक्ष क्रिस्टल के लिए तेज़ या धीमी धुरी हो सकती है। प्रकाश एक उच्च चरण वेग के साथ एक अक्ष के साथ यात्रा करता है जिसमें सबसे छोटा अपवर्तक सूचकांक होता है और इस अक्ष को तेज अक्ष कहा जाता है। इसी प्रकार, जिस अक्ष का अपवर्तक सूचकांक सबसे बड़ा होता है उसे धीमी धुरी कहा जाता है क्योंकि इस अक्ष के साथ प्रकाश का चरण वेग सबसे कम होता है। ऋणात्मक एक अक्षीय क्रिस्टल (जैसे, केल्साइट CaCO3, नीलम Al2O3) ne < no है अतः इन क्रिस्टलों के लिए, असाधारण अक्ष (प्रकाशिकी अक्ष) तीव्र अक्ष है, जबकि धनात्मक एकअक्षीय क्रिस्टलों के लिए (जैसे., क्वार्टज़ SiO2,मैग्नीशियम फ्लोराइड MgF2, रूटाइल TiO2), ne > no (जैसे, क्वार्टज़ SiO2)2, मैग्नीशियम फ्लोराइड MgF2, रूटाइल TiO2), एनe> एनoऔर इस प्रकार असाधारण अक्ष (प्रकाशिकी अक्ष) धीमी धुरी है। अन्य व्यावसायिक रूप से उपलब्ध रैखिक चरण मंदक उपस्थित हैं और अधिक विशिष्ट अनुप्रयोगों में उपयोग किए जाते हैं। फ्रेस्नेल समचतुर्भुज ऐसा ही एक विकल्प है।
x- और y-अक्ष के रूप में परिभाषित अपनी तेज धुरी के साथ कोई रैखिक चरण मंदक शून्य ऑफ-विकर्ण शब्द है और इस प्रकार इसे आसानी से व्यक्त किया जा सकता है
जहाँ और क्रमशः x और y दिशाओं में विद्युत क्षेत्र के चरण ऑफसेट हैं। चरण सम्मेलन में , दो तरंगों के बीच सापेक्ष चरण को के रूप में परिभाषित करें। फिर एक सकारात्मक (अर्थात। > ) अर्थ है कि बाद के समय तक के समान मान प्राप्त नहीं करता है, अर्थात का नेतृत्व करता है। इसी प्रकार, यदि तो आगे जाता है।
उदाहरण के लिए, यदि एक चौथाई वेवप्लेट का तेज अक्ष क्षैतिज है, तो क्षैतिज दिशा के साथ चरण वेग ऊर्ध्वाधर दिशा से आगे है, अर्थात। नेतृत्व . इस प्रकार, जो एक चौथाई वेवप्लेट के लिए पैदावार देता है .
विपरीत परिपाटी में सापेक्ष प्रावस्था को के रूप में परिभाषित करें। तब का अर्थ है
बाद के समय तक यानी नेतृत्व तक के समान मान प्राप्त नहीं करता है।
चरण मंदक | संबंधित जोन्स मैट्रिक्स |
---|---|
तेज धुरी के साथ क्वार्टर-वेव प्लेट वर्टिकल[4][note 1] | |
तेज अक्ष क्षैतिज के साथ क्वार्टर-वेव प्लेट [4] | |
क्षैतिज अक्ष के सापेक्ष 𝜃 कोण पर तेज अक्ष के साथ क्वार्टर-वेव प्लेट | |
क्षैतिज अक्ष के सापेक्ष 𝜃 कोण पर तीव्र अक्ष के साथ अर्ध-लहर प्लेट [5] | |
सामान्य वेवप्लेट (रैखिक चरण मंदक) [3] | |
मनमाना द्विअर्थी सामग्री (अण्डाकार चरण मंदक) [3][6] |
जोन्स मैट्रिक्स जोन्स कैलकुस में ध्रुवीकरण परिवर्तन का सबसे सामान्य रूप है; यह किसी भी ध्रुवीकरण परिवर्तन का प्रतिनिधित्व कर सकता है। इसे देखने के लिए कोई दिखा सकता है
उपरोक्त मैट्रिक्स सम्मेलन का उपयोग करके विशेष एकात्मक समूह | एसयू (2) के तत्वों के लिए एक सामान्य पैरामीट्रिजेशन है
जहां ओवरलाइन जटिल संयुग्म को दर्शाता है।
अंत में, यह स्वीकार करते हुए कि एकात्मक परिवर्तन का सेट चालू है के रूप में व्यक्त किया जा सकता है
यह स्पष्ट हो जाता है कि एक मनमाने ढंग से द्विअर्थी सामग्री के लिए जोन्स मैट्रिक्स एक चरण कारक तक किसी भी एकात्मक परिवर्तन का प्रतिनिधित्व करता है . इसलिए, के उचित विकल्प के लिए , , और , किसी भी दो जोन्स वैक्टर के बीच एक परिवर्तन पाया जा सकता है, एक चरण कारक तक . चूंकि , जोन्स कैलकुलस में, ऐसे चरण कारक जोन्स वेक्टर के प्रतिनिधित्व वाले ध्रुवीकरण को नहीं बदलते हैं, इसलिए या तो इच्छानुसार माना जाता है या एक निर्धारित सम्मेलन के अनुरूप तदर्थ लगाया जाता है।
एक द्विअर्थी सामग्री के लिए सामान्य अभिव्यक्ति में उपयुक्त पैरामीटर मान लेकर चरण मंदक के लिए विशेष अभिव्यक्ति प्राप्त की जा सकती है।[6]सामान्य अभिव्यक्ति में:
- तेज अक्ष और धीमी धुरी के बीच प्रेरित सापेक्ष चरण मंदता द्वारा दिया जाता है
- एक्स-अक्ष के संबंध में तेज़ धुरी का अभिविन्यास है।
- वर्तुलाकारता है।
ध्यान दें कि रैखिक मंदक के लिए, = 0 और गोलाकार मंदक के लिए, = ± /2, = /4. सामान्यतः अण्डाकार मंदक के लिए, के बीच मान लेता है - /2 और /2.
अक्षीय रूप से घुमाए गए तत्व
मान लें कि एक प्रकाशीय तत्व का अपना प्रकाशिकी अक्ष है घटना के विमान के लिए सतह वेक्टर के लंबवत और इस सतह वेक्टर के बारे में कोण θ/2 (यानी, कार्डिनल_पॉइंट_(ऑप्टिक्स)#प्रिंसिपल_प्लेन्स_एंड_पॉइंट्स के माध्यम से घुमाया जाता है, जिसके माध्यम से प्रकाशिकी अक्ष गुजरता है, विद्युत क्षेत्र के ध्रुवीकरण के तल के संबंध में θ/2 कोण बनाता है घटना की TE तरंग)। याद रखें कि एक अर्ध-तरंग प्लेट ध्रुवीकरण को घटना ध्रुवीकरण और प्रकाशिकी अक्ष (प्रमुख तल) के बीच दो बार कोण के रूप में घुमाती है। इसलिए, घुमाए गए ध्रुवीकरण राज्य, एम (θ) के लिए जोन्स मैट्रिक्स है
- जहाँ
यह उपरोक्त तालिका में अर्ध-लहर प्लेट के लिए अभिव्यक्ति से सहमत है। ये घूर्णन द्वारा दिए गए प्रकाशीय भौतिकी में बीम एकात्मक फाड़नेवाला परिवर्तन के समान हैं
जहां प्राइमेड और अनप्राइमेड गुणांक बीम स्प्लिटर के विपरीत पक्षों से बीम घटना का प्रतिनिधित्व करते हैं। परावर्तित और संचरित घटक एक चरण θ प्राप्त करते हैंrऔर θt, क्रमश। तत्व के वैध प्रतिनिधित्व के लिए आवश्यकताएं हैं [7]
और
- ये दोनों अभ्यावेदन एकात्मक मैट्रिक्स हैं जो इन आवश्यकताओं को पूरा करते हैं; और इस तरह, दोनों मान्य हैं।
मनमाने ढंग से घुमाए गए तत्व
इसमें त्रि-आयामी रोटेशन मैट्रिक्स शामिल होगा। इस पर किए गए कार्य के लिए रसेल ए. चिपमैन और गरम युन देखें।[8][9][10][11]
यह भी देखें
टिप्पणियाँ
संदर्भ
- ↑ "जोन्स कैलकुलस". spie.org. Retrieved 2022-08-07.
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Fowles, G. (1989). Introduction to Modern Optics (2nd ed.). Dover. p. 35.
- ↑ 3.0 3.1 3.2 P.S. Theocaris; E.E. Gdoutos (1979). Photoelasticity का मैट्रिक्स सिद्धांत. Springer Series in Optical Sciences. Vol. 11 (1st ed.). Springer-Verlag. doi:10.1007/978-3-540-35789-6. ISBN 978-3-662-15807-4.
- ↑ 4.0 4.1 4.2 Eugene Hecht (2001). Optics (4th ed.). p. 378. ISBN 978-0805385663.
- ↑ Gerald, A.; Burch, J.M. (1975). Introduction to Matrix Methods in Optics (1st ed.). John Wiley & Sons. p. 212. ISBN 978-0471296850.
- ↑ 6.0 6.1 Gill, Jose Jorge; Bernabeu, Eusebio (1987). "Obtainment of the polarizing and retardation parameters of a non-depolarizing optical system from the polar decomposition of its Mueller matrix". Optik. 76 (2): 67–71. ISSN 0030-4026.
- ↑ Ou, Z. Y.; Mandel, L. (1989). "ऊर्जा संतुलन से बीम स्प्लिटर के लिए पारस्परिक संबंधों की व्युत्पत्ति". Am. J. Phys. 57 (1): 66. doi:10.1119/1.15873.
- ↑ Chipman, Russell A. (1995). "ध्रुवीकरण किरण अनुरेखण के यांत्रिकी". Opt. Eng. 34 (6): 1636–1645. doi:10.1117/12.202061.
- ↑ Yun, Garam; Crabtree, Karlton; Chipman, Russell A. (2011). "Three-dimensional polarization ray-tracing calculus I: definition and diattenuation". Applied Optics. 50 (18): 2855–2865. doi:10.1364/AO.50.002855. PMID 21691348.
- ↑ Yun, Garam; McClain, Stephen C.; Chipman, Russell A. (2011). "Three-dimensional polarization ray-tracing calculus II: retardance". Applied Optics. 50 (18): 2866–2874. doi:10.1364/AO.50.002866. PMID 21691349.
- ↑ Yun, Garam (2011). ध्रुवीकरण रे अनुरेखण (PhD thesis). University of Arizona. hdl:10150/202979.
अग्रिम पठन
- E. Collett, Field Guide to Polarization, SPIE Field Guides vol. FG05, SPIE (2005). ISBN 0-8194-5868-6.
- D. Goldstein and E. Collett, Polarized Light, 2nd ed., CRC Press (2003). ISBN 0-8247-4053-X.
- E. Hecht, Optics, 2nd ed., Addison-Wesley (1987). ISBN 0-201-11609-X.
- Frank L. Pedrotti, S.J. Leno S. Pedrotti, Introduction to Optics, 2nd ed., Prentice Hall (1993). ISBN 0-13-501545-6
- A. Gerald and J.M. Burch, Introduction to Matrix Methods in Optics,1st ed., John Wiley & Sons(1975). ISBN 0-471-29685-6
- Jones, R. Clark (1941). "A new calculus for the treatment of optical systems, I. Description and Discussion of the Calculus". Journal of the Optical Society of America. 31 (7): 488–493. doi:10.1364/JOSA.31.000488.
- Hurwitz, Henry; Jones, R. Clark (1941). "A new calculus for the treatment of optical systems, II. Proof of three general equivalence theorems". Journal of the Optical Society of America. 31 (7): 493–499. doi:10.1364/JOSA.31.000493.
- Jones, R. Clark (1941). "A new calculus for the treatment of optical systems, III The Sohncke Theory of optical activity". Journal of the Optical Society of America. 31 (7): 500–503. doi:10.1364/JOSA.31.000500.
- Jones, R. Clark (1942). "A new calculus for the treatment of optical systems, IV". Journal of the Optical Society of America. 32 (8): 486–493. doi:10.1364/JOSA.32.000486.
- Fymat, A. L. (1971). "Jones's Matrix Representation of Optical Instruments. I: Beam Splitters". Applied Optics. 10 (11): 2499–2505. Bibcode:1971ApOpt..10.2499F. doi:10.1364/AO.10.002499. PMID 20111363.
- Fymat, A. L. (1971). "Jones's Matrix Representation of Optical Instruments. 2: Fourier Interferometers (Spectrometers and Spectropolarimeters)". Applied Optics. 10 (12): 2711–2716. Bibcode:1971ApOpt..10.2711F. doi:10.1364/AO.10.002711. PMID 20111418.
- Fymat, A. L. (1972). "Polarization Effects in Fourier Spectroscopy. I: Coherency Matrix Representation". Applied Optics. 11 (1): 160–173. Bibcode:1972ApOpt..11..160F. doi:10.1364/AO.11.000160. PMID 20111472.
- Gill, Jose Jorge; Bernabeu, Eusebio (1987). "Obtainment of the polarizing and retardation parameters of a non-depolarizing optical system from the polar decomposition of its Mueller matrix". Optik. 76: 67–71.
- Brosseau, Christian; Givens, Clark R.; Kostinski, Alexander B. (1993). "Generalized trace condition on the Mueller-Jones polarization matrix". Journal of the Optical Society of America A. 10 (10): 2248–2251. Bibcode:1993JOSAA..10.2248B. doi:10.1364/JOSAA.10.002248.
- McGuire, James P.; Chipman, Russel A. (1994). "Polarization aberrations. 1. Rotationally symmetric optical systems". Applied Optics. 33 (22): 5080–5100. Bibcode:1994ApOpt..33.5080M. doi:10.1364/AO.33.005080. PMID 20935891. S2CID 3805982.
- Pistoni, Natale C. (1995). "Simplified approach to the Jones calculus in retracing optical circuits". Applied Optics. 34 (34): 7870–7876. Bibcode:1995ApOpt..34.7870P. doi:10.1364/AO.34.007870. PMID 21068881.
- Moreno, Ignacio; Yzuel, Maria J.; Campos, Juan; Vargas, Asticio (2004). "Jones matrix treatment for polarization Fourier optics". Journal of Modern Optics. 51 (14): 2031–2038. Bibcode:2004JMOp...51.2031M. doi:10.1080/09500340408232511. hdl:10533/175322. S2CID 120169144.
- Moreno, Ivan (2004). "Jones matrix for image-rotation prisms". Applied Optics. 43 (17): 3373–3381. Bibcode:2004ApOpt..43.3373M. doi:10.1364/AO.43.003373. PMID 15219016. S2CID 24268298.
- William Shurcliff (1966) Polarized Light: Production and Use, chapter 8 Mueller Calculus and Jones Calculus, page 109, Harvard University Press.