संख्यात्मक विधि
संख्यात्मक विश्लेषण में, एक संख्यात्मक विधि एक गणितीय उपकरण है जिसे संख्यात्मक समस्याओं को हल करने के लिए डिज़ाइन किया गया है। एक प्रोग्रामिंग भाषा में एक उपयुक्त अभिसरण जाँच के साथ एक संख्यात्मक पद्धति के कार्यान्वयन को एक संख्यात्मक एल्गोरिथम कहा जाता है।
गणितीय परिभाषा
माना एक अच्छी तरह से बनाई गई समस्या हो, अर्थात एक वास्तविक या जटिल कार्यात्मक संबंध है, जो एक इनपुट डेटा सेट के क्रॉस-उत्पाद पर परिभाषित होता है। और एक आउटपुट डेटा सेट , जैसे कि लिप्सचिट्ज़ निरंतरता समारोह मौजूद है रिज़ॉल्वेंट (प्रत्यक्ष समस्या) कहा जाता है, जिसमें वह गुण होता है जो हर रूट के लिए होता है का , . हम के सन्निकटन के लिए संख्यात्मक विधि को परिभाषित करते हैं , समस्याओं का क्रम
साथ , और हरएक के लिए . जिन समस्याओं की विधि शामिल है, उन्हें अच्छी तरह से प्रस्तुत करने की आवश्यकता नहीं है। यदि वे हैं, तो विधि को स्थिर या सुव्यवस्थित कहा जाता है।[1]
संगति
प्रभावी रूप से अनुमानित करने के लिए एक संख्यात्मक पद्धति के लिए आवश्यक शर्तें वो है ओर वो जैसा व्यवहार करता है कब . तो, एक संख्यात्मक विधि को सुसंगत कहा जाता है यदि और केवल यदि कार्यों का क्रम बिंदुवार अभिसरण करता है मंच पर इसके समाधानों में से:
कब पर विधि को सख्ती से सुसंगत कहा जाता है।[1]
अभिसरण
द्वारा निरूपित करें के स्वीकार्य गड़बड़ी का एक क्रम कुछ संख्यात्मक विधि के लिए (अर्थात। ) और साथ मूल्य ऐसा है . एक शर्त जिसे समस्या को हल करने के लिए एक सार्थक उपकरण होने के लिए विधि को पूरा करना होता है अभिसरण है:
कोई आसानी से सिद्ध कर सकता है कि बिंदुवार अभिसरण को तात्पर्य संबद्ध विधि का अभिसरण कार्य है।[1]
यह भी देखें
संदर्भ
- ↑ 1.0 1.1 1.2 Quarteroni, Sacco, Saleri (2000). Numerical Mathematics (PDF). Milano: Springer. p. 33. Archived from the original (PDF) on 2017-11-14. Retrieved 2016-09-27.
{{cite book}}
: CS1 maint: multiple names: authors list (link)