स्थिर समरूपता सिद्धांत
गणित में, स्थिर समरूपता सिद्धांत समरूपता सिद्धांत (और इस प्रकार बीजगणितीय टोपोलॉजी) का भाग है जो सभी संरचना और घटनाओं से संबंधित है जो निलंबन कारक के पर्याप्त रूप से कई अनुप्रयोगों के बाद भी रहता है। एक संस्थापक परिणाम फ्रायडेंथल निलंबन प्रमेय था, जिसमें कहा गया है कि किसी भी बिंदु पर स्थान दिया गया है , समरूपता समूह पर्याप्त रूप से के लिए स्थिर है। विशेष रूप से, गोले के समरूपता समूह के लिए स्थिर होते हैं। उदाहरण के लिए,
उपरोक्त दो उदाहरणों में समरूपता समूहों के बीच के सभी मानचित्र निलंबन कारक के अनुप्रयोग हैं। पहला उदाहरण ह्युरेविक्ज़ प्रमेय का एक मानक परिणाम है, कि । दूसरे उदाहरण में हॉफ मानचित्र, , इसके निलंबन के लिए मैप किया गया है , जो उत्पन्न करता है ।
स्थिर होमोटोपी सिद्धांत में सबसे महत्वपूर्ण समस्याओं में से एक है क्षेत्रों के स्थिर समरूपता समूहों की गणना। फ्रायडेंथल के प्रमेय के अनुसार, स्थिर श्रेणी (टोपोलॉजी) में क्षेत्रों के होमोटोपी समूह डोमेन और लक्ष्य में क्षेत्रों के विशिष्ट आयामों पर निर्भर नहीं करते हैं, बल्कि उन आयामों में अंतर पर निर्भर करते हैं। इसे ध्यान में रखते हुए k-वें स्थिर तना है
- ।
यह सभी k के लिए एक एबेलियन समूह है। यह जीन पियरे सेरे का एक प्रमेय है[1] कि ये समूह सीमित हैं । वास्तव में रचना बनती है एक वर्गीकृत अंगूठी में। ग्राउंडर निशिदा का एक प्रमेय[2] बताता है कि इस रिंग में सकारात्मक ग्रेडिंग के सभी तत्व शून्य हैं। इस प्रकार केवल प्रमुख आदर्श ही अभाज्य हैं । तो की संरचना काफी जटिल है।
स्थिर समरूपता सिद्धांत के आधुनिक उपचार में, रिक्त स्थान को आमतौर पर स्पेक्ट्रम (होमोटोपी सिद्धांत) द्वारा प्रतिस्थापित किया जाता है। विचार की इस पंक्ति के बाद, एक संपूर्ण स्थिर होमोटोपी श्रेणी बनाई जा सकती है। इस श्रेणी में कई अच्छे गुण हैं जो (अस्थिर) समरूपता श्रेणी के रिक्त स्थान में मौजूद नहीं हैं, इस तथ्य के बाद कि निलंबन कारक उलटा हो जाता है। उदाहरण के लिए, cofibration और फ़िब्रेशन अनुक्रम की धारणा समतुल्य है।
यह भी देखें
- एडम्स निस्पंदन
- एडम्स वर्णक्रमीय अनुक्रम
- रंगीन समरूपता सिद्धांत
- समपरिवर्ती स्थिर समरूपता सिद्धांत
- निलपोटेंस प्रमेय
संदर्भ
- ↑ Serre, Jean-Pierre (1953). "होमोटॉपी समूह और एबेलियन समूहों की कक्षाएं". Annals of Mathematics. 58 (2): 258–295. doi:10.2307/1969789. JSTOR 1969789.
- ↑ Nishida, Goro (1973), "The nilpotency of elements of the stable homotopy groups of spheres", Journal of the Mathematical Society of Japan, 25 (4): 707–732, doi:10.2969/jmsj/02540707, ISSN 0025-5645, MR 0341485
- Adams, J. Frank (1966), Stable homotopy theory, Second revised edition. Lectures delivered at the University of California at Berkeley, vol. 1961, Berlin, New York: Springer-Verlag, MR 0196742
- May, J. Peter (1999), "Stable Algebraic Topology, 1945–1966" (PDF), Stable algebraic topology, 1945--1966, Amsterdam: North-Holland, pp. 665–723, CiteSeerX 10.1.1.30.6299, doi:10.1016/B978-044482375-5/50025-0, ISBN 9780444823755, MR 1721119
- Ravenel, Douglas C. (1992), Nilpotence and periodicity in stable homotopy theory, Annals of Mathematics Studies, vol. 128, Princeton University Press, ISBN 978-0-691-02572-8, MR 1192553