स्थिर समरूपता सिद्धांत

From Vigyanwiki
Revision as of 11:26, 5 May 2023 by alpha>Aagman

गणित में, स्थिर समरूपता सिद्धांत समरूपता सिद्धांत (और इस प्रकार बीजगणितीय टोपोलॉजी) का भाग है जो सभी संरचना और घटनाओं से संबंधित है जो निलंबन कारक के पर्याप्त रूप से कई अनुप्रयोगों के बाद भी रहता है। एक संस्थापक परिणाम फ्रायडेंथल निलंबन प्रमेय था, जिसमें कहा गया है कि किसी भी बिंदु पर स्थान दिया गया है, समरूपता समूह पर्याप्त रूप से के लिए स्थिर है। विशेष रूप से, गोले के समरूपता समूह के लिए स्थिर होते हैं। उदाहरण के लिए,

उपरोक्त दो उदाहरणों में समरूपता समूहों के बीच के सभी प्रतिचित्र निलंबन कारक के अनुप्रयोग हैं। पहला उदाहरण ह्युरेविक्ज़ प्रमेय का एक मानक परिणाम है, जो कि । दूसरे उदाहरण में हॉफ प्रतिचित्र, , को इसके निलंबन में प्रतिचित्रित किया गया है, जो उत्पन्न करता है।

स्थिर समरूपता सिद्धांत में सबसे महत्वपूर्ण समस्याओं में से एक है क्षेत्रों के स्थिर समरूपता समूहों की गणना। फ्रायडेंथल के प्रमेय के अनुसार, स्थिर श्रेणी (टोपोलॉजी) में क्षेत्रों के समरूपता समूह प्रांत और लक्ष्य में क्षेत्रों के विशिष्ट आयामों पर निर्भर नहीं करते हैं, बल्कि उन आयामों में अंतर पर निर्भर करते हैं। इसे ध्यान में रखते हुए k-वें स्थिर मूल

है।

यह सभी k के लिए एक एबेलियन समूह है। यह जीन पियरे सेरे का एक प्रमेय है[1] कि ये समूह के लिए परिमित हैं। वस्तुतः रचना को एक श्रेणीबद्ध वलय में बनाती है। गोरो निशिदा के एक प्रमेय[2] में कहा गया है कि इस वलय में धनात्मक श्रेणीकरण के सभी अवयव शून्य हैं। इस प्रकार में मात्र अभाज्य गुण ही अभाज्य संख्याएँ हैं। अतः की संरचना अत्यधिक जटिल है।

स्थिर समरूपता सिद्धांत के आधुनिक उपचार में, रिक्त स्थान को सामान्यतः वर्णक्रम (समरूपता सिद्धांत) द्वारा प्रतिस्थापित किया जाता है। विचार की इस पंक्ति के बाद, एक संपूर्ण स्थिर समरूपता श्रेणी बनाई जा सकती है। इस श्रेणी में कई अच्छे गुण हैं जो (अस्थिर) समरूपता श्रेणी के रिक्त स्थान में स्थित नहीं हैं, इस तथ्य के बाद कि निलंबन कारक विपरीत हो जाते है। उदाहरण के लिए, सोफ़िब्रिटिओं और फ़िब्रेशन अनुक्रम की धारणा समतुल्य है।

यह भी देखें

संदर्भ

  1. Serre, Jean-Pierre (1953). "होमोटॉपी समूह और एबेलियन समूहों की कक्षाएं". Annals of Mathematics. 58 (2): 258–295. doi:10.2307/1969789. JSTOR 1969789.
  2. Nishida, Goro (1973), "The nilpotency of elements of the stable homotopy groups of spheres", Journal of the Mathematical Society of Japan, 25 (4): 707–732, doi:10.2969/jmsj/02540707, ISSN 0025-5645, MR 0341485