बलोच क्षेत्र

From Vigyanwiki
Revision as of 12:18, 10 May 2023 by alpha>Ravisingh
बलोच क्षेत्र

परिमाण यांत्रिकी और परिमाण कम्प्यूटिंग में, बलोच क्षेत्र एक दो-स्तरीय प्रणाली के शुद्ध अवस्था स्थान का एक ज्यामितीय प्रतिनिधित्व है। दो-स्तरीय परिमाण यांत्रिक तन्त्र (क्विबिट), जिसका नाम भौतिक विज्ञानी फेलिक्स बलोच के नाम पर रखा गया है।[1]

परिमाण यांत्रिकी गणितीय रूप से हिल्बर्ट स्थल अथवा प्रक्षेपीय हिल्बर्ट स्थल अंतरिक्ष में तैयार की गई है। एक परिमाण प्रणाली की शुद्ध अवस्था संबंधित हिल्बर्ट अंतरिक्ष (और प्रक्षेपीय हिल्बर्ट अंतरिक्ष के बिंदु) के एक आयामी उप-स्थान के अनुरूप होती है। द्वि-आयामी हिल्बर्ट अंतरिक्ष के लिए, ऐसे सभी दिक् का स्थान जटिल प्रक्षेपण रेखा है यह बलोच क्षेत्र है, जिसे रीमैन क्षेत्र में मानचित्र किया जा सकता है।

बलोच क्षेत्र एक इकाई एन-क्षेत्र 2-वृत्त है, जिसमें पारस्परिक रूप से आयतीय स्थिति सदिश की एक जोड़ी के अनुरूप प्रतिव्यासांत बिंदु होते हैं। बलोच क्षेत्र के उत्तरी और दक्षिणी ध्रुवों को सामान्यतः मानक आधार सदिश और के अनुरूप चुना जाता है, क्रमशः, जो बदले में एक इलेक्ट्रॉन की स्पिन (भौतिकी)-अप और स्पिन (भौतिकी)-डाउन अवस्थाओं के लिए उदा. हो सकता है। हालाँकि यह चुनाव स्वेच्छाचारी है। गोले की सतह पर बिंदु प्रणाली की शुद्ध अवस्थाओं की परिमाण अवस्था के अनुरूप होते हैं, जबकि आंतरिक बिंदु मिश्रित अवस्थाओं के अनुरूप होते हैं।[2][3] बलोच स्फीयर को n-स्तर परिमाण प्रणाली के लिए सामान्यीकृत किया जा सकता है, लेकिन तब मानसिक चित्रण कम उपयोगी होता है।

ऐतिहासिक कारणों से, प्रकाशिकी में बलोच क्षेत्र को पोंकारे क्षेत्र (दृग्विद्या) के रूप में भी जाना जाता है और विशेष रूप से विभिन्न प्रकार के ध्रुवीकरण (तरंगों) का प्रतिनिधित्व करता है। छह सामान्य ध्रुवीकरण प्रकार उपस्थित हैं और उन्हें जोन्स सदिश कहा जाता है। वास्तव में हेनरी पोंकारे 19वीं शताब्दी के अंत में स्टोक्स मापदंडों के त्रि-आयामी प्रतिनिधित्व के रूप में इस तरह के ज्यामितीय प्रतिनिधित्व के उपयोग का सुझाव देने वाले पहले व्यक्ति थे।[4]

बलोच क्षेत्र पर प्राकृतिक मापीय (गणित) फ़ुबिनी-अध्ययन मापीय है। द्वि-आयामी स्थिति अंतरिक्ष में इकाई 3-क्षेत्र से मानचित्रण बलोच क्षेत्र के लिए हॉप फ़िब्रेशन है, जिसमें घूर्णक के प्रत्येक प्रक्षेपीय हिल्बर्ट स्थल के साथ बलोच क्षेत्र पर एक बिंदु पर मानचित्रण होता है।

परिभाषा

एक अलौकिक आधार दिया गया है, दो-स्तरीय क्वांटम प्रणाली के किसी भी शुद्ध अवस्था को आधार सदिशों और के अधिस्थापन के रूप में लिखा जा सकता है , जहां दो आधार सदिशों में से प्रत्येक का गुणांक (या योगदान) एक सम्मिश्र संख्या है। इसका अर्थ है कि स्थिति को चार वास्तविक संख्याओं द्वारा वर्णित किया गया है। हालाँकि दो आधार सदिश के गुणांक के बीच केवल सापेक्ष चरण का कोई भौतिक अर्थ है (परिमाण प्रणाली का चरण सीधे परिमाण यांत्रिकी में माप नहीं है), ताकि इस विवरण में अतिरेक हो सके। हम का गुणांक वास्तविक और गैर-नकारात्मक ले सकते हैं। यह बलोच क्षेत्र के तीन आयामों को उत्पन्न करते हुए स्थिति को केवल तीन वास्तविक संख्याओं द्वारा वर्णित करने की अनुमति देता है।

हम परिमाण यांत्रिकी से यह भी जानते हैं कि प्रणाली की कुल संभावना एक होनी चाहिए:

, या समकक्ष .

इस बाधा को देखते हुए हम निम्नलिखित प्रतिनिधित्व का उपयोग करके लिख सकते हैं:

, जहाँ और .

प्रतिनिधित्व हमेशा अनूठा होता है, क्योंकि, भले ही का मूल्य अद्वितीय नहीं है जब स्तिथि में से एक (ब्रा-केट चिन्हांकन देखें) या है, और द्वारा दर्शाया गया बिंदु अद्वितीय है।

मापदण्ड और , गोलाकार समन्वय प्रणाली में क्रमशः z-अक्ष के संबंध में समांतरता और x-अक्ष के संबंध में देशांतर के रूप में फिर से व्याख्या की गई, निम्नलिखित में एक बिंदु निर्दिष्ट करें

इकाई क्षेत्र पर बिंदु निर्दिष्ट करें।

मिश्रित अवस्था (भौतिकी) के लिए, एक घनत्व संचालक पर विचार करता है। कोई द्वि-आयामी घनत्व संचालक ρ I और हर्मिटियन मैट्रिक्स, ट्रेस (रैखिक बीजगणित) पॉल मैट्रिसेस अस्मिता का उपयोग करके विस्तारित किया जा सकता है,

,

जहाँ बलोच सदिश कहा जाता है।

यह सदिश क्षेत्र के भीतर उस बिंदु को इंगित करता है जो किसी दिए गए मिश्रित स्थिति से मेल खाता है। विशेष रूप से, पाउली मैट्रिसेस # पाउली सदिश की मूल विशेषता के रूप में, के आइगेनवेल्यूज़ ρ हैं . घनत्व ऑपरेटरों को सकारात्मक-अर्ध-परिमित होना चाहिए, इसलिए यह उसी का अनुसरण करता है .

शुद्ध राज्यों के लिए, एक के पास है

उपरोक्त के अनुरूप।[5] नतीजतन, बलोच क्षेत्र की सतह द्वि-आयामी परिमाण प्रणाली के सभी शुद्ध राज्यों का प्रतिनिधित्व करती है, जबकि आंतरिक सभी मिश्रित राज्यों से मेल खाती है।

यू, वी, डब्ल्यू प्रतिनिधित्व

बलोच सदिश घनत्व संचालक के संदर्भ में निम्नलिखित आधार पर प्रतिनिधित्व किया जा सकता है :[6]

जहाँ

यह आधार अक्सर लेज़र सिद्धांत में प्रयोग किया जाता है, जहां जनसंख्या व्युत्क्रमण के रूप में जाना जाता है।[7] इस आधार पर, संख्याएँ तीन पाउली मेट्रिसेस की अपेक्षाएं हैं , एक को xy और z अक्षों के साथ तीन निर्देशांकों की पहचान करने की अनुमति देता है।

शुद्ध अवस्थाएँ

एक एन-लेवल परिमाण मैकेनिकल प्रणाली पर विचार करें। इस प्रणाली का वर्णन एन-डायमेंशनल हिल्बर्ट स्पेस एच द्वारा किया गया हैn. परिभाषा के अनुसार शुद्ध अवस्था स्थान H की 1-आयामी किरणों का समुच्चय हैn.

प्रमेय। U(N)|U(n) आकार n के एकात्मक मैट्रिसेस का झूठा समूह होने दें। फिर 'एच' का शुद्ध स्थिति स्थानn कॉम्पैक्ट कोसेट स्पेस के साथ पहचाना जा सकता है

इस तथ्य को सिद्ध करने के लिए, ध्यान दें कि H की अवस्थाओं के समुच्चय पर U(n) की एक प्राकृतिक रूपांतरण समूह क्रिया (गणित) है।n. यह क्रिया शुद्ध अवस्थाओं पर निरंतर और सकर्मक समूह क्रिया है। किसी भी स्थिति के लिए , का आइसोट्रॉपी समूह , (तत्वों के सेट के रूप में परिभाषित यू (एन) की ऐसी है कि ) उत्पाद समूह के लिए आइसोमोर्फिक है

रैखिक बीजगणित के संदर्भ में, इसे निम्नानुसार उचित ठहराया जा सकता है। कोई यू (एन) का जो छोड़ देता है अपरिवर्तनीय होना चाहिए एक आइजन्वेक्टर के रूप में। चूंकि संबंधित eigenvalue मापांक 1 की एक सम्मिश्र संख्या होनी चाहिए, यह आइसोट्रॉपी समूह का U(1) कारक देता है। आइसोट्रॉपी समूह के दूसरे भाग को आयतीय पूरक पर एकात्मक मैट्रिसेस द्वारा पैरामीट्रिज किया गया है , जो U(n − 1) के लिए तुल्याकारी है। इससे प्रमेय का अभिकथन कॉम्पैक्ट समूहों के सकर्मक समूह कार्यों के बारे में बुनियादी तथ्यों से होता है।

ऊपर ध्यान देने योग्य महत्वपूर्ण तथ्य यह है कि एकात्मक समूह शुद्ध अवस्थाओं पर सकर्मक रूप से कार्य करता है।

अब U(n) का (वास्तविक) आयाम n है2</उप>। घातीय मानचित्र के बाद से यह देखना आसान है

स्व-संलग्न जटिल मैट्रिसेस के स्थान से यू (एन) तक एक स्थानीय होमोमोर्फिज्म है। स्व-संलग्न जटिल आव्यूहों के स्थान का वास्तविक आयाम n है2</उप>।

परिणाम। 'एच' के शुद्ध स्थिति स्थान का वास्तविक आयामn 2n - 2 है।

वास्तव में,

आइए इसे m qubit परिमाण रजिस्टर के वास्तविक आयाम पर विचार करने के लिए लागू करें। संबंधित हिल्बर्ट स्पेस का आयाम 2 हैमी.

'परिणाम'। m-qubit परिमाण रजिस्टर के शुद्ध अवस्था स्थान का वास्तविक आयाम 2 हैएम+1 − 2.

== स्टीरियोग्राफिक प्रोजेक्शन == के माध्यम से शुद्ध दो-स्पिनर स्टेट्स प्लॉट करना

बलोच क्षेत्र के मूल पर केंद्रित है . उस पर बिंदुओं की एक जोड़ी, और आधार के रूप में चुना गया है। गणितीय रूप से वे ओर्थोगोनल हैं, हालांकि ग्राफिक रूप से उनके बीच का कोण π है। में उन बिंदुओं के निर्देशांक (0,0,1) और (0,0,−1) हैं। एक स्वेच्छाचारी स्पिनर बलोच क्षेत्र पर दो आधार घूर्णक के एक अद्वितीय रैखिक संयोजन के रूप में प्रतिनिधित्व करने योग्य है, जिसमें गुणांक जटिल संख्याओं की एक जोड़ी है; उन्हें α और β कहते हैं। उनका अनुपात होने दें , जो एक सम्मिश्र संख्या भी है . समतल z = 0 पर विचार करें, गोले का विषुवतीय तल, जैसा कि यह था, एक जटिल तल है और बिंदु u को इस रूप में प्लॉट किया गया है . प्रोजेक्ट पॉइंट यू स्टैरियोग्राफिक रूप से बलोच क्षेत्र पर दक्षिण ध्रुव से दूर - जैसा कि था - (0,0,-1)। प्रक्षेपण गोले पर चिह्नित बिंदु पर है .

शुद्ध अवस्था दी

जहाँ और जटिल संख्याएँ हैं जिन्हें सामान्यीकृत किया जाता है ताकि

और ऐसा है और , अर्थात्, ऐसा कि और एक आधार बनाते हैं और बलोच क्षेत्र पर बिल्कुल विपरीत प्रतिनिधित्व करते हैं, फिर चलो

उनका अनुपात हो।

यदि बलोच क्षेत्र को अंतर्निहित माना जाता है मूल में इसके केंद्र के साथ और त्रिज्या एक के साथ, फिर विमान z = 0 (जो बलोच क्षेत्र को एक बड़े वृत्त पर काटता है; गोले का भूमध्य रेखा, जैसा कि था) को अरगंड आरेख के रूप में माना जा सकता है। इस विमान में प्लॉट पॉइंट यू - ताकि अंदर इसके निर्देशांक हैं .

यू के माध्यम से और प्रतिनिधित्व करने वाले गोले पर बिंदु के माध्यम से एक सीधी रेखा खींचें . (चलो (0,0,1) प्रतिनिधित्व करते हैं और (0,0,−1) प्रतिनिधित्व करते हैं .) यह रेखा गोले को इसके अलावा एक अन्य बिंदु पर काटती है . (एकमात्र अपवाद है जब , यानी कब और .) इस बिंदु को P कहते हैं। समतल z = 0 पर बिंदु u बलोच क्षेत्र पर बिंदु P का त्रिविमीय प्रक्षेपण है। मूल बिंदु पर पूंछ और पी पर टिप वाला सदिश स्पिनर के अनुरूप 3-डी अंतरिक्ष में दिशा है . P के निर्देशांक हैं

.

गणितीय रूप से दो-स्पिनर स्थिति के लिए बलोच क्षेत्र को रीमैन क्षेत्र या एक जटिल 2-आयामी प्रक्षेपीय हिल्बर्ट स्पेस में मानचित्र किया जा सकता है, जिसे निरूपित किया जा सकता है . जटिल द्वि-आयामी हिल्बर्ट अंतरिक्ष (जिसका कि एक प्रक्षेपण है) SO(3) का प्रतिनिधित्व स्थान है।[8]


घनत्व संचालक

पृथक प्रणालियों के लिए शुद्ध अवस्थाओं के संदर्भ में परिमाण यांत्रिकी के सूत्रीकरण पर्याप्त हैं; घनत्व मैट्रिक्स के संदर्भ में सामान्य परिमाण यांत्रिक प्रणालियों में वर्णित करने की आवश्यकता है। बलोच क्षेत्र न केवल शुद्ध अवस्थाओं बल्कि 2-स्तरीय प्रणालियों के लिए मिश्रित अवस्थाओं का पैरामीट्रिज़ करता है। 2-स्तरीय परिमाण प्रणाली (qubit) के मिश्रित-स्थिति का वर्णन करने वाला घनत्व संचालक निम्नलिखित निर्देशांक के साथ बलोच क्षेत्र के अंदर एक बिंदु से मेल खाता है:

जहाँ पहनावा के भीतर अलग-अलग राज्यों की संभावना है और अलग-अलग राज्यों के निर्देशांक हैं (बलोच क्षेत्र की सतह पर)। बलोच स्फेयर पर और अंदर सभी बिंदुओं के सेट को बलोच बॉल के रूप में जाना जाता है।

उच्च आयाम वाले राज्यों के लिए इसे मिश्रित राज्यों तक विस्तारित करने में कठिनाई होती है। टोपोलॉजिकल विवरण इस तथ्य से जटिल है कि एकात्मक समूह घनत्व संचालकों पर सकर्मक रूप से कार्य नहीं करता है। इसके अलावा, कक्षाएँ अत्यंत विविध हैं, जैसा कि निम्नलिखित अवलोकन से पता चलता है:

'प्रमेय'। मान लीजिए A एक n स्तर परिमाण मैकेनिकल प्रणाली पर घनत्व संचालक है जिसका अलग-अलग eigenvalues ​​​​μ हैं1, ..., एमk गुणन के साथ एन1, ..., एनk. फिर एकात्मक संकारकों का समूह V ऐसा कि V A V* = A समरूपी (एक झूठ समूह के रूप में) है

विशेष रूप से ए की कक्षा आइसोमोर्फिक है

बलोच गेंद के निर्माण को 2 से बड़े आयामों के लिए सामान्यीकृत करना संभव है, लेकिन ऐसे बलोच शरीर की ज्यामिति गेंद की तुलना में अधिक जटिल होती है।[9]


परिक्रमण

बलोच क्षेत्र के प्रतिनिधित्व का एक उपयोगी लाभ यह है कि बलोच क्षेत्र के घुमावों द्वारा क्वबिट स्थिति का विकास वर्णित है। ऐसा क्यों है, इसकी सबसे संक्षिप्त व्याख्या यह है कि एकात्मक और हर्मिटियन मैट्रिसेस के समूह के लिए झूठ बीजगणित तीन आयामी घुमावों के समूह के लाई बीजगणित के लिए आइसोमोर्फिक है .[10]


बलोच आधार के बारे में रोटेशन संचालक

बलोच आधार में कार्तीय कुल्हाड़ियों के बारे में बलोच क्षेत्र के रोटेशन द्वारा दिया जाता है[11]


एक सामान्य अक्ष के चारों ओर घूमना

अगर तीन आयामों में एक वास्तविक इकाई सदिश है, इस अक्ष के बारे में बलोच क्षेत्र का रोटेशन निम्न द्वारा दिया गया है:

ध्यान देने वाली एक दिलचस्प बात यह है कि यह अभिव्यक्ति चतुष्कोणों और स्थानिक घुमाव के लिए विस्तारित यूलर सूत्र के पुन: लेबलिंग के समान है।


=== बलोच रोटेशन जनरेटर === की व्युत्पत्ति बैलेंटाइन[12] अतिसूक्ष्म एकात्मक परिवर्तन के लिए एक सहज व्युत्पत्ति प्रस्तुत करता है। यह समझने के लिए महत्वपूर्ण है कि बलोच क्षेत्रों के घूर्णन पाउली मेट्रिसेस के रैखिक संयोजनों के घातीय क्यों हैं। अतः इसका संक्षिप्त उपचार यहाँ दिया जा रहा है। परिमाण मैकेनिकल संदर्भ में एक अधिक पूर्ण विवरण रोटेशन संचालक (परिमाण यांत्रिकी) पाया जा सकता है।

एकात्मक संचालकों के एक परिवार पर विचार करें किसी अक्ष के परितः घूर्णन को निरूपित करना। चूंकि रोटेशन में स्वतंत्रता की एक डिग्री होती है, संचालक स्केलर्स के क्षेत्र में कार्य करता है ऐसा है कि:

जहाँ हम असीम एकात्मक को परिभाषित करते हैं क्योंकि टेलर का विस्तार दूसरे क्रम में छोटा है।

एकात्मक स्थिति से:

इस तरह

इस समानता को सत्य मानने के लिए (माना जाता है नगण्य है) हमें चाहिए

.

इसका परिणाम फॉर्म के समाधान में होता है:

जहाँ कोई हर्मिटियन परिवर्तन है, और इसे एकात्मक परिवार का जनक कहा जाता है।

इस तरह:

पाउली मेट्रिसेस के बाद से एकात्मक हर्मिटियन मैट्रिसेस हैं और बलोच आधार के अनुरूप ईजेनवेक्टर हैं, , हम स्वाभाविक रूप से देख सकते हैं कि कैसे बलोच का घूर्णन एक स्वेच्छाचारी अक्ष के बारे में है द्वारा वर्णित है

द्वारा दिए गए रोटेशन जनरेटर के साथ


यह भी देखें

संदर्भ

  1. Bloch, Felix (Oct 1946). "परमाणु प्रेरण". Phys. Rev. 70 (7–8): 460–474. Bibcode:1946PhRv...70..460B. doi:10.1103/physrev.70.460.; see Arecchi, F T, Courtens, E, Gilmore, R, & Thomas, H (1972). "Atomic coherent states in quantum optics", Phys Rev A6(6): 2211
  2. Nielsen, Michael A.; Chuang, Isaac L. (2004). Quantum Computation and Quantum Information. Cambridge University Press. ISBN 978-0-521-63503-5.
  3. "Bloch sphere | Quantiki".
  4. Poincaré, Henri (1892). Théorie mathématique de la lumière II. G. Carré.
  5. The idempotent density matrix
    acts on the state eigenvector with eigenvalue 1, so like a projection operator for it.
  6. Feynman, Richard; Vernon, Frank; Hellwarth, Robert (January 1957). "Geometrical Representation of the Schrödinger Equation for Solving Maser Problems". Journal of Applied Physics. 28 (1): 49–52. Bibcode:1957JAP....28...49F. doi:10.1063/1.1722572. S2CID 36493808.
  7. Milonni, Peter W.; Eberly, Joseph (1988). लेजर. New York: Wiley. p. 340. ISBN 978-0471627319.
  8. Penrose, Roger (2007) [2004]. The Road to Reality : A Complete Guide to the Laws of the Universe. New York: Vintage Books (Random House, Inc.). p. 554. ISBN 978-0-679-77631-4.
  9. Appleby, D.M. (2007). "मनमाना रैंक के सममित सूचनात्मक रूप से पूर्ण माप". Optics and Spectroscopy. 103 (3): 416–428. arXiv:quant-ph/0611260. Bibcode:2007OptSp.103..416A. doi:10.1134/S0030400X07090111. S2CID 17469680.
  10. D.B. Westra 2008, "SU(2) and SO(3)", https://www.mat.univie.ac.at/~westra/so3su2.pdf
  11. Nielsen and Chuang 2010, "Quantum Computation and Information," pg 174
  12. Ballentine 2014, "Quantum Mechanics - A Modern Development", Chapter 3