भागफल मॉड्यूल
बीजगणित में, एक मॉड्यूल (गणित) और एक उपमॉड्यूल दिए जाने पर, कोई उनके भागफल मॉड्यूल का निर्माण कर सकता है।[1][2] नीचे वर्णित यह रचना भागफल सदिश समष्टि के समान है। यह रिंग (गणित) और समूह (गणित) के अनुरूप भागफल निर्माण से इस तथ्य से भिन्न है कि इन स्थितियों में, भागफल को परिभाषित करने के लिए उपयोग किया जाने वाला उप-स्थान परिवेश स्थान (अर्थात, भागफल वलय) के समान प्रकृति का नहीं है। एक आदर्श (रिंग सिद्धांत) द्वारा रिंग का भागफल है, न कि एक उपरिंग, और एक भागफल समूह एक सामान्य उपसमूह द्वारा समूह का भागफल है, सामान्य उपसमूह द्वारा नहीं है)।
एक मॉड्यूल दिया A रिंग के ऊपर R, और एक उपमॉड्यूल B का A, भागफल स्थान (टोपोलॉजी) A/B तुल्यता संबंध द्वारा परिभाषित किया गया है
- यदि और केवल यदि
किसी के लिए a, b में A. के तत्व A/B तुल्यता वर्ग हैं कार्य (गणित) भेजना a में A इसके समकक्ष वर्ग के लिए a + B भागफल नक्शा या प्रक्षेपण नक्शा कहा जाता है, और एक मॉड्यूल समरूपता है।
A/B पर जोड़ संचालन को दो समतुल्य वर्गों के लिए इन वर्गों के दो प्रतिनिधियों के योग के समतुल्य वर्ग के रूप में परिभाषित किया गया है; और R के तत्वों द्वारा A/B के तत्वों का अदिश गुणन इसी तरह परिभाषित किया गया है। ध्यान दें कि यह दिखाना होगा कि ये ऑपरेशन अच्छी तरह से परिभाषित हैं। तब A/B स्वयं एक R-मॉड्यूल बन जाता है, जिसे भागफल मॉड्यूल कहा जाता है। सभी a, b में A और r में R के लिए प्रतीकों में:
उदाहरण
रिंग पर विचार करें वास्तविक संख्याओं का, और -मापांक वह वास्तविक गुणांकों वाला बहुपद वलय है। उपमॉड्यूल पर विचार करें
A का, अर्थात X 2 + 1 से विभाज्य सभी बहुपदों का सबमॉड्यूल यह इस प्रकार है कि इस मॉड्यूल द्वारा निर्धारित तुल्यता संबंध होगा
- P(X) ~ Q(X) यदि और केवल यदि P(X) और Q(X) को X 2 + 1 से विभाजित करने पर समान शेषफल प्राप्त होता है
इसलिए, भागफल मॉड्यूल A/B में, X 2 + 1 0 के समान है; इसलिए X 2 + 1 = 0 सेट करके से प्राप्त A/B को देखा जा सकता है। यह भागफल मॉड्यूल जटिल संख्याओं के लिए समरूपहै, वास्तविक संख्या पर एक मॉड्यूल के रूप में देखा जाता है। .
यह भी देखें
- गुणक समूह
- भागफल की रिंग
- भागफल (सार्वभौमिक बीजगणित)
संदर्भ
- ↑ Dummit, David S.; Foote, Richard M. (2004). सार बीजगणित (3rd ed.). John Wiley & Sons. ISBN 0-471-43334-9.
- ↑ Lang, Serge (2002). बीजगणित. Graduate Texts in Mathematics. Springer. ISBN 0-387-95385-X.