क्षेत्र नियम

From Vigyanwiki
पूरेवायु फ्रेम के साथ क्रॉस-सेक्शनल क्षेत्र वितरण लहर कर्षण को निर्धारित करता है, जो वास्तविक आकार से बहुत हद तक स्वतंत्र है। नीले और हल्के हरे रंग की आकृतियाँ क्षेत्रफल में लगभग बराबर हैं।

व्हिटकोम्ब क्षेत्रीय नियम, जिसका नाम नासा (एनएसीए) इंजीनियर रिचर्ड विटकोम्ब के नाम पर रखा गया है और जिसे ट्रांसोनिक क्षेत्र नियम भी कहा जाता है, यह एक डिजाइन प्रक्रिया है जिसका उपयोग ट्रांसोनिक गति पर किसी विमान के कर्षण (भौतिकी) को कम करने के लिए किया जाता है जो लगभग 0.75 और 1.2 मच संख्या के बीच होती है। सुपरसोनिक गति के लिए एनएसीए वायुगतिकीविद् रॉबर्ट थॉमस जोन्स (इंजीनियर) द्वारा विकसित सुपरसोनिक क्षेत्र नियम नामक अलग प्रक्रिया का उपयोग किया जाता है।

ट्रांसोनिक आज वाणिज्यिक और सैन्य उड़ान विमान के लिए सबसे महत्वपूर्ण गति सीमाओं में से एक है, जिसमें ट्रांसोनिक त्वरण के साथ फाइटर विमानों के लिए महत्वपूर्ण प्रदर्शन की आवश्यकता है और जो ट्रांसोनिक कर्षण में कमी के कारण से सुधार हुआ है।

विवरण

उच्च-सबसोनिक उड़ान गति पर वायु प्रवाह की स्थानीय गति ध्वनि की गति तक पहुंच सकती है जहां विमान के शरीर और पंखों के चारों ओर प्रवाह तेज हो जाता है। जिस गति से यह विकास होता है वह विमान से विमान में भिन्न होता है और इसे महत्वपूर्ण मच के रूप में जाना जाता है। ध्वनि प्रवाह के इन क्षेत्रों में उत्पन्न होने वाली प्रघात तरंग कर्षण (भौतिकी) में अचानक वृद्धि का कारण बनती हैं, जिसे लहर कर्षण कहा जाता है। इन प्रघात तरंगों की संख्या और शक्ति को कम करने के लिए, वायुगतिकीय आकार क्रॉस सेक्शन (ज्यामिति) क्षेत्र में जितना संभव हो उतना सुचारू रूप से आगे-पीछे की ओर बदलना चाहिए।

ट्रांसोनिक क्षेत्र नियम

क्षेत्र नियम कहता है कि दो हवाई जहाज़ों में एक ही देशान्तरीय अनुप्रस्थ काट वाले क्षेत्र का वितरण समान तरंगित कर्षण हेतु होता है, जो यह नहीं जानते कि किस प्रकार क्षेत्र को बाद में किस प्रकार वितरित किया जाना चाहिए अर्थात पार्श्ववर्ती भाग या पंख के रूप में वितरित किया जाना चाहिए। इसके अतिरिक्त प्रबल आघात तरंगों के निर्माण से बचने के लिए विमान के बाहरी आकार को सावधानी से व्यवस्थित किया जाना चाहिए जिससे कि आगे से पूंछ तक क्रॉस-सेक्शनल क्षेत्र जितना संभव हो उतना सुचारू रूप से बदल सके। पंख के स्थान पर फूसिलेज संकुचित या वेस्टेड रूप में बनाई जाती है। फ्यूजलेज क्रॉस-सेक्शनल क्षेत्र को बुलबुला कैनोपी के नीचे और पूंछ की सतहों के किनारों को सपाट करके कम करने की आवश्यकता होती है और जिससे कि उनकी उपस्थिति की भरपाई हो सके और इस प्रकार दोनों जिनमें से हॉकर सिडली बुकेनेर पर किए गए थे।[1]

सुपरसोनिक क्षेत्र नियम

एक अलग क्षेत्र नियम, जिसे सुपरसोनिक क्षेत्र नियम के रूप में जाना जाता है, NACA वायुगतिकीविद् रॉबर्ट जोन्स द्वारा सुपरसोनिक गति पर विंग-बॉडी कर्षण के सिद्धांत में विकसित किया गया है।[2]ट्रांसोनिक से परे गति पर लागू होता है, और इस स्थितियों े में, डिजाइन गति के लिए मैक शंकु के कोण के संबंध में क्रॉस-आंशिक क्षेत्र की आवश्यकता स्थापित की जाती है। उदाहरण के लिए, विचार करें कि मैक 1.3 पर विमान की नाक द्वारा उत्पन्न मैक शंकु का कोण कोण μ = आर्क्सिन (1/एम) = 50.3 डिग्री होगा (जहां μ मैक शंकु का कोण है, जिसे भी जाना जाता है मैक कोण के रूप में, और एम मैक संख्या है)। इस स्थितियों े में सही आकार पीछे की ओर झुका हुआ है; इसलिए, सुपरसोनिक गति से निचली तरंग कर्षण के लिए डिज़ाइन किए गए विमान में सामान्यतः पीछे की ओर पंख होते हैं।[2]


सियर्स-हैक बॉडी

एक सतही रूप से संबंधित अवधारणा सियर्स-हैक बॉडी है, जिसका आकार दी गई लंबाई और दी गई मात्रा के लिए न्यूनतम तरंग कर्षण की अनुमति देता है। चूंकि , सियर्स-हैक शरीर का आकार Prandtl-Glauert Transformation|Prandtl-Glauert समीकरण से प्रारंभ होता है, जो लगभग छोटे-अशांति सबसोनिक प्रवाह को नियंत्रित करता है, साथ ही एकरेट थ्योरी, जो सुपरसोनिक प्रवाह का बारीकी से वर्णन करता है। दोनों विधियाँ ट्रांसोनिक प्रवाह के लिए वैधता खो देती हैं जहाँ क्षेत्र नियम लागू होता है, उनकी व्युत्पत्तियों में की गई मान्यताओं के कारण। तो चूंकि सियर्स-हैक शरीर का आकार, चिकना होने के कारण, क्षेत्र के नियम के अनुसार अनुकूल तरंग कर्षण गुण होंगे, यह सैद्धांतिक रूप से इष्टतम नहीं है।[3]


इतिहास

जर्मनी

Ju-287 जेट इंजनों की असामान्य व्यवस्था क्षेत्र नियम के कारण है।

क्षेत्र नियम की खोज किसके द्वारा की गई थी Otto Frenzl [de] जब स्वेप्ट विंग की तुलना डब्ल्यू-विंग से अत्यधिक हाई लहर कर्षण के साथ की जाती है[4] 1943 और 1945 के बीच जर्मनी में जंकर्स (एयरक्राफ्ट) में एक ट्रांसोनिक विंड टनल पर काम करते हुए। उन्होंने 17 दिसंबर 1943 को एक विवरण लिखा, जिसका शीर्षक Anordnung von Verdrängskörpern beim Hochgeschwindigkeitsflug (हाई-स्पीड फ़्लाइट में विस्थापन निकायों की व्यवस्था) था; इसका उपयोग 1944 में दायर एक पेटेंट में किया गया था।[5] इस शोध के परिणाम मार्च 1944 में डॉयचे अकादेमी डेर लुफ्फ्फाहर्टफॉरचुंग (जर्मन एकेडमी ऑफ एरोनॉटिक्स रिसर्च) में थियोडोर ज़ोबेल द्वारा उच्च गति वाले विमानों के प्रदर्शन को बढ़ाने के मौलिक रूप से नए विधियों के व्याख्यान में प्रस्तुत किए गए थे।[6]

बाद के जर्मन युद्धकालीन विमान डिजाइन ने खोज को ध्यान में रखा, मेसर्सचमिट P.1112, मेसर्सचमिट P.1106|P.1106 और Focke-Wulf 1000x1000x1000 प्रकार के एक लंबी दूरी के बमवर्षक सहित विमान के पतले मध्य-फूसिलेज में स्पष्ट है, लेकिन इसमें भी स्पष्ट है हेन्शेल एचएस 135 सहित डेल्टा विंग डिज़ाइन। कई अन्य शोधकर्ता एक समान सिद्धांत विकसित करने के करीब आए, विशेष रूप से डायट्रिच कुचेमैन जिन्होंने एक पतला लड़ाकू डिज़ाइन किया था जिसे कुचेमैन कोक बोतल करार दिया गया था जब इसे 1946 में अमेरिकी सेना द्वारा खोजा गया था। इस स्थितियों े में कुचेमैन पहुंचे। फूसिलेज और बह गया पंख के बीच जंक्शन परवायु प्रवाह , विशेष रूप से हस्तक्षेप, या स्थानीय प्रवाह स्ट्रीमलाइन का अध्ययन करके सिद्धांत पर। प्रवाह से मेल खाने के लिए फूसिलेज को समोच्च या वेस्टेड किया गया था। इस नियर फील्ड एप्रोच को आकार देने की आवश्यकता व्हिटकोम्ब के बाद के दूर के फील्ड एप्रोच के परिणामस्वरूप उनके सोनिक क्षेत्र नियम का उपयोग करके कमी को कम करने के लिए होगी।[7]


संयुक्त राज्य

सुपरसोनिक उड़ान के अग्रणी वालेस डी। हेस ने 1947 में अपने पीएच.डी. के साथ प्रकाशनों में ट्रांसोनिक क्षेत्र नियम विकसित किया। कैलिफोर्निया प्रौद्योगिकी संस्थान में थीसिस।[8]

अप्रैल 1955: व्हिटकोम्ब ने अपने क्षेत्र के नियम के अनुसार डिजाइन किए गए एक मॉडल विमान की जांच की।

रिचर्ड टी. व्हिटकोम्ब, जिनके नाम पर इस नियम का नाम रखा गया है, ने 1952 में एरोनॉटिक्स के लिए राष्ट्रीय सलाहकार समिति (एनएसीए) में काम करते हुए स्वतंत्र रूप से इस नियम की खोज की। एनएसीए के लैंगली रिसर्च सेंटर में मैक 0.95 तक के प्रदर्शन के साथ एक पवन सुरंग, नई आठ-फुट हाई-स्पीड सुरंग का उपयोग करते समय, शॉक लहर निर्माण के कारण कर्षण में वृद्धि से वह हैरान थे। व्हिटकोम्ब ने महसूस किया कि, विश्लेषणात्मक उद्देश्यों के लिए, एक हवाई जहाज को क्रांति के एक सुव्यवस्थित शरीर में कम किया जा सकता है, जितना संभव हो सके अचानक असंतोष को कम करने के लिए और इसलिए, समान रूप से अचानक कर्षण वृद्धि।[9] झटकों को श्लेयरन फोटोग्राफी का उपयोग करते हुए देखा जा सकता था, लेकिन वे ध्वनि की गति से बहुत कम गति से बनाए जा रहे थे, कभी-कभी मैक 0.70 के रूप में कम, एक रहस्य बना रहा।

1951 के अंत में, लैब ने एडॉल्फ बुसेमैन, एक प्रसिद्ध जर्मन वायुगतिकीविद्, जो द्वितीय विश्व युद्ध के बाद लैंग्ली चले गए थे, द्वारा एक वार्ता की मेजबानी की। उन्होंने एक हवाई जहाज के चारों ओर वायु प्रवाह के व्यवहार के बारे में बात की, क्योंकि इसकी गति महत्वपूर्ण मैक संख्या तक पहुंच गई थी, जब हवा अब एक संपीड़ित तरल पदार्थ के रूप में व्यवहार नहीं करती थी। जबकि इंजीनियरों को विमान के शरीर के चारों ओर आसानी से बहने वाली हवा के बारे में सोचने की आदत थी, उच्च गति पर बस रास्ते से हटने का समय नहीं था, और इसके अतिरिक्त प्रवाहित होना प्रारंभ हो गया जैसे कि यह प्रवाह के कठोर पाइप थे, एक अवधारणा बुसेमैन स्ट्रीमलाइन्स, स्ट्रीकलाइन्स और पाथलाइन्स के विपरीत स्ट्रीमपाइप्स के रूप में संदर्भित, और मजाक में सुझाव दिया कि इंजीनियरों को खुद को पाइपफिटर मानना ​​​​चाहिए।

कई दिनों बाद व्हिटकोम्ब के पास यूरेका (शब्द) पल था। उच्च खिंचाव का कारण यह था कि हवा के पाइप तीन आयामों में एक दूसरे के साथ हस्तक्षेप कर रहे थे। कोई केवल विमान के 2डी क्रॉस-सेक्शन पर बहने वाली हवा पर विचार नहीं करता है जैसा कि अतीत में अन्य लोग कर सकते थे; अब उन्हें विमान के किनारों की हवा पर भी विचार करना था जो इन स्ट्रीमपाइप्स के साथ भी बातचीत करेगा। व्हिटकोम्ब ने महसूस किया कि आकार देने के लिए केवल हवाई जहाज़ के ढांचे के अतिरिक्त पूरे विमान पर लागू होना था। इसका मतलब था कि पंखों और पूंछ के अतिरिक्त क्रॉस-आंशिक क्षेत्र को समग्र आकार देने के लिए जिम्मेदार ठहराया जाना चाहिए, और फूसिलेज को वास्तव में संकुचित किया जाना चाहिए जहां वे आदर्श से अधिक निकटता से मिलते हैं।

अनुप्रयोग

पहला विमान जहां क्षेत्र नियम लागू किया गया था, वह जर्मन बॉम्बर टेस्टबेड विमान जंकर्स जू 287|जंकर्स जू-287 (1944) था।[10] अन्य संबंधित जर्मन डिजाइन युद्ध की समाप्ति के कारण पूरे नहीं हुए थे या योजना के चरण में भी बने रहे।

जब व्हिटकोम्ब द्वारा क्षेत्र नियम की फिर से खोज की गई, तो इसे 1952 से सैन्य कार्यक्रमों के लिए गुप्त आधार पर अमेरिकी विमान उद्योग के लिए उपलब्ध कराया गया था।[11] और यह 1957 में नागरिक कार्यक्रमों के लिए रिपोर्ट किया गया था। [12] कॉनवेयर और ग्रुम्मन, व्हिटकोम्ब की मदद से, ग्रुम्मन एफ -11 टाइगर को डिजाइन करने के लिए और कॉन्वेयर F-102 को फिर से डिज़ाइन करने के लिए समवर्ती रूप से इसका उपयोग किया।[13] ग्रुम्मन F-11 टाइगर उड़ान भरने वाले दो विमानों में से पहला था और शुरुआत से ही क्षेत्र के नियम का उपयोग करके डिजाइन किया गया था।[14] Convair F-102 डेल्टा डैगर को फिर से डिज़ाइन करना पड़ा क्योंकि यह मच 1 तक पहुँचने में असमर्थ था, चूँकि इसकी डिज़ाइन गति 1.2 मच थी। उम्मीद है कि यह डिजाइन की गति तक पहुंच जाएगी, आशावादी पवन-सुरंग कर्षण भविष्यवाणियों पर आधारित थी।[15][16] संशोधन जिसमें पंखों के बगल में फ्यूजलेज को इंडेंट करना और विमान के पिछले हिस्से में अधिक वॉल्यूम जोड़ना सम्मलित था, ट्रांसोनिक कर्षण को बहुत कम कर दिया और मैक 1.2 डिजाइन की गति तक पहुंच गया। इन लड़ाकू विमानों पर क्षेत्र नियम का उपयोग करने का कारण मैक 1 पर होने वाले कर्षण के चरम मूल्य को कम करना था और इसलिए सुपरसोनिक गति को कम जोर से सक्षम करना अन्यथा आवश्यक होता।

1957 में परिवहन विमान की सबसोनिक क्रूज गति को 50 मील प्रति घंटे तक बढ़ाने के लिए एक संशोधित क्षेत्र नियम उपलब्ध था।[12]क्रूज गति कर्षण में अचानक वृद्धि से सीमित है जो विंग के शीर्ष पर स्थानीय सुपरसोनिक प्रवाह की उपस्थिति को इंगित करता है। व्हिटकोम्ब के संशोधित नियम ने झटके से पहले सुपरसोनिक गति को कम कर दिया, जिससे यह कमजोर हो गया और इससे जुड़े कर्षण को कम कर दिया। कॉन्वेयर 990 में आवश्यक क्रूज गति प्राप्त करने के इरादे से विंग की शीर्ष सतह पर जोड़ा गया एंटी-शॉक बॉडी कहा जाता है। चूंकि , नैकेले/पाइलॉन/विंग सतहों द्वारा गठित चैनलों में क्षेत्र वितरण भी सुपरसोनिक वेग का कारण बना और महत्वपूर्ण कर्षण का स्रोत था। आवश्यक क्रूज गति प्राप्त करने के लिए एक क्षेत्र-नियम तकनीक, तथाकथित चैनल क्षेत्र-शासन, को लागू किया गया था।

आर्मस्ट्रांग-व्हिटवर्थ के डिजाइनरों ने ध्वनि क्षेत्र नियम को अपने प्रस्तावित एम-विंग में एक कदम आगे बढ़ाया, जिसमें विंग को पहले आगे और फिर पीछे की ओर घुमाया गया। इसने फ्यूजलेज को रूट के सामने और साथ ही इसके पीछे संकुचित करने की इजाजत दी, जिससे एक चिकनी फ्यूजलेज हो गई जो क्लासिक स्वेप्ट विंग का उपयोग करके औसतन एक से अधिक व्यापक बनी रही।

रॉकवेल बी-1 लांसर और बोइंग 747 पर उड़ान डेक के पीछे के विस्तार को क्षेत्र नियम के अनुसार क्रॉस-सेक्शनल क्षेत्र वितरण में सुधार के लिए जोड़ा गया था।[17]

व्हिटकोम्ब के क्षेत्र नियम (जैसे F-102 डेल्टा डैगर और नॉर्थ्रॉप F-5) के अनुसार डिजाइन किए गए विमान पहली बार दिखाई देने पर अजीब लगते थे और कभी-कभी उड़ने वाली कोक की बोतलें करार दी जाती थीं, लेकिन यह कुछ ट्रांसोनिक विमानों की उपस्थिति का एक अपेक्षित हिस्सा बन गया। . हवाई जहाज़ के आकार को क्षेत्र नियम ने स्पष्ट रूप से परिभाषित किया है, जैसे नॉर्थ्रॉप F-5 पर फ्यूजलेज वेस्टिंग और टिप-टैंक शेपिंग, और बॉम्बार्डियर ग्लोबल एक्सप्रेस जैसे रियर इंजन वाले बिजनेस जेट्स पर रियर फ्यूजलेज थिनिंग। नियम में भागों की सावधानीपूर्वक स्थिति की भी आवश्यकता होती है, जैसे रॉकेट पर बूस्टर और कार्गो बे और F-22 रैप्टर पर कैनोपी का आकार और स्थान।

प्रोटोटाइप कॉनकॉर्ड पर सुपरसोनिक क्षेत्र नियम मैक 2 पर लागू किया गया था। पिछले फूसिलेज को उत्पादन विमान पर 3.73 मीटर तक बढ़ाया गया था और तरंग कर्षण को 1.8% कम कर दिया था।[18]


छवियां


यह भी देखें

टिप्पणियाँ

  1. From Spitfire To Eurofighter 45 Years of Combat Aircraft Design,Roy Boot,ISBN 1 85310 093 5,p.93
  2. 2.0 2.1 Jones, Robert T (1956), Theory of wing-body drag at Supersonic speeds (PDF) (report), UK: NACA, 1284, archived from the original (PDF) on 2020-12-05, retrieved 2008-09-12.
  3. Spencer, B., Jr; Stivers, L. S., Jr. (October 1967). "हाइपरसोनिक गति पर इष्टतम शरीर के आकार का अध्ययन" (PDF). nasa.gov. Retrieved 4 November 2022.{{cite web}}: CS1 maint: multiple names: authors list (link)
  4. Heinzerling, Werner, Flügelpfeilung und Flächenregel, zwei grundlegende deutsche Patente der Flugzeugaerodynamik [Wing sweep and area rule, two basic German patents of aircraft aerodynamics] (PDF) (in Deutsch), München, DE: Deutsches Museum, archived from the original (PDF) on 2011-07-19, retrieved 2010-11-06.
  5. Patentschrift zur Flächenregel [Patent for the area rule] (PDF) (in Deutsch), 21 Mar 1944.
  6. Meier, Hans-Ulrich (2006), Die Pfeilflügelentwicklung in Deutschland bis 1945 [The swept-wing development in Germany until 1945] (in Deutsch), pp. 166–99, ISBN 3-7637-6130-6.
  7. Design For Combat Aircraft,Ray Whitford 1987,ISBN 0 7106 0426 2,Fig.161
  8. Wallace Hayes (obituary), Princeton.
  9. Hallion, Richard P. "एनएसीए, नासा और सुपरसोनिक-हाइपरसोनिक फ्रंटियर" (PDF). NASA. NASA Technical Reports Server. Retrieved 8 September 2011.
  10. Meier, Hans-Ulrich (2006), Die Pfeilflügelentwicklung in Deutschland bis 1945 [The swept-wing development in Germany until 1945] (in Deutsch), pp. 166–99, ISBN 3-7637-6130-6.
  11. "Aviation Week 1955-09-12". 12 September 1955.
  12. 12.0 12.1 "Aviation Week: August 12, 1957". McGraw-Hill. 12 August 1957. p. 29. Retrieved 4 November 2022.
  13. "Aviation Week: September 12, 1955". McGraw-Hill. 12 September 1955. p. 12. Retrieved 4 November 2022.
  14. Design For Air Combat, Ray Whitford,ISBN 0 7106 0426 2,p.156
  15. The World's Fighting Planes Fourth and completely revised edition,William Green 1964,MacDonald & Co.(Publishers) Ltd.,Gulf House,2 Portman Street,London W.1,p.136
  16. Wallace 1998, p. 144.
  17. Wallace 1998, p. 147.
  18. A Case Study By Aerospatiale And British Aerospace On The Concorde By Jean Rech and Clive S. Leyman,AIAA Professional Study Series, Fig. 3.6


ग्रन्थसूची


बाहरी संबंध