पुनरावृत्त बाइनरी ऑपरेशन
गणित में, पुनरावर्तित बाइनरी ऑपरेशन एक सेट (गणित) S पर बाइनरी ऑपरेशन का विस्तार है, जो बार-बार आवेदन के माध्यम से S के तत्वों के परिमित अनुक्रमों पर फ़ंक्शन (गणित) तक होता है।[1] सामान्य उदाहरणों में संकलन संक्रिया में जोड़ संक्रिया का विस्तार, और गुणन संक्रिया का उत्पाद (गणित) संक्रिया तक विस्तार शामिल है। अन्य संचालन, उदाहरण के लिए, सेट-थ्योरिटिक ऑपरेशंस संघ (सेट सिद्धांत) और चौराहा (सेट सिद्धांत) भी अक्सर दोहराए जाते हैं, लेकिन पुनरावृत्तियों को अलग-अलग नाम नहीं दिए जाते हैं। प्रिंट में, योग और उत्पाद विशेष प्रतीकों द्वारा दर्शाए जाते हैं; लेकिन अन्य पुनरावृत्त ऑपरेटरों को अक्सर साधारण बाइनरी ऑपरेटर के प्रतीक के बड़े वेरिएंट द्वारा दर्शाया जाता है। इस प्रकार, ऊपर वर्णित चार परिचालनों के पुनरावृत्तियों को निरूपित किया गया है
- और , क्रमश।
अधिक आम तौर पर, बाइनरी फ़ंक्शन का पुनरावृत्ति आमतौर पर स्लैश द्वारा दर्शाया जाता है: पुनरावृत्ति अनुक्रम के ऊपर द्वारा निरूपित किया जाता है , बर्ड-मीर्टेंस औपचारिकता में फोल्ड (उच्च-क्रम फ़ंक्शन) के लिए संकेतन के बाद।
सामान्य तौर पर, परिमित अनुक्रमों पर संचालित करने के लिए बाइनरी ऑपरेशन का विस्तार करने का एक से अधिक तरीका है, यह इस बात पर निर्भर करता है कि क्या ऑपरेटर साहचर्य है, और क्या ऑपरेटर के पास पहचान तत्व हैं।
सामान्य तौर पर, परिमित अनुक्रमों पर संचालित करने के लिए बाइनरी ऑपरेशन का विस्तार क
परिभाषा
ए द्वारा निरूपित करेंj,k, साथ j ≥ 0 और k ≥ j, लंबाई का परिमित क्रम {{nowrap|k − j}सदस्यों के साथ एस के तत्वों का } (एi), के लिए j ≤ i < k. ध्यान दें कि अगर k = j, अनुक्रम खाली है।
के लिए f : S × S, नया फ़ंक्शन F परिभाषित करेंl एस के तत्वों के परिमित गैर-खाली अनुक्रमों पर, जहां
यदि f साहचर्य है, तो Fl एफ के बराबरr, और हम बस एफ लिख सकते हैं। इसके अलावा, यदि कोई पहचान तत्व ई मौजूद है, तो यह अद्वितीय है (मोनॉयड देखें)।
यदि f क्रमविनिमेय और साहचर्य है, तो F किसी भी गैर-खाली परिमित multiset पर इसे मल्टीसेट की मनमानी गणना पर लागू करके संचालित कर सकता है। यदि इसके अलावा f में पहचान तत्व e है, तो इसे खाली मल्टीसेट पर F के मान के रूप में परिभाषित किया जाता है। यदि f idempotent है, तो उपरोक्त परिभाषाओं को परिमित सेटों तक बढ़ाया जा सकता है।
यदि S भी मेट्रिक (गणित) या अधिक सामान्यतः टोपोलॉजी से लैस है जो हॉसडॉर्फ स्पेस है, ताकि अनुक्रम की सीमा की अवधारणा को S में परिभाषित किया जा सके, तो S में गणनीय अनुक्रम पर अनंतता पुनरावृति को ठीक उसी समय परिभाषित किया जाता है जब परिमित पुनरावृत्तियों का संगत क्रम अभिसरण करता है। इस प्रकार, उदाहरण के लिए, यदि ए0, ए1, ए2, ए3, … वास्तविक संख्याओं का अनंत क्रम है, फिर अनंत गुणनफल परिभाषित है, और के बराबर है अगर और केवल अगर वह सीमा मौजूद है।
गैर-सहयोगी बाइनरी ऑपरेशन
मैग्मा (बीजगणित) द्वारा सामान्य, गैर-सहयोगी बाइनरी ऑपरेशन दिया जाता है। गैर-सहयोगी बाइनरी ऑपरेशन पर पुनरावृति के कार्य को बाइनरी ट्री के रूप में दर्शाया जा सकता है।
नोटेशन
पुनरावृत्त बाइनरी ऑपरेशंस का उपयोग ऑपरेशन का प्रतिनिधित्व करने के लिए किया जाता है जिसे कुछ बाधाओं के अधीन सेट पर दोहराया जाएगा। आमतौर पर प्रतिबंध की निचली सीमा प्रतीक के नीचे लिखी जाती है, और ऊपरी सीमा प्रतीक के ऊपर लिखी जाती है, हालांकि उन्हें कॉम्पैक्ट नोटेशन में सुपरस्क्रिप्ट और सबस्क्रिप्ट के रूप में भी लिखा जा सकता है। इंटरपोलेशन निचले से ऊपरी बाउंड तक सकारात्मक पूर्णांक पर किया जाता है, सेट का उत्पादन करने के लिए जिसे इंडेक्स में प्रतिस्थापित किया जाएगा (नीचे i के रूप में दर्शाया गया है)) बार-बार संचालन के लिए।
सामान्य संकेतन में बड़ा सिग्मा (सारांश) और बड़ा पाई (उत्पाद (गणित)) अंकन शामिल हैं।
यह भी देखें
- जारी अंश
- गुना (उच्च क्रम समारोह)
- अनंत उत्पाद
- अनंत श्रंखला
संदर्भ
- ↑ Saunders MacLane (1971). कामकाजी गणितज्ञ के लिए श्रेणियाँ. New York: Springer-Verlag. p. 142. ISBN 0387900357.
- ↑ Weisstein, Eric W. "मिलन". mathworld.wolfram.com (in English). Wolfram Mathworld. Retrieved 30 January 2018.