रेडियो-फ्रीक्वेंसी माइक्रोइलेक्ट्रॉनिक सिस्टम

From Vigyanwiki
Revision as of 11:30, 2 June 2023 by alpha>Akriti
File:RF MEMS.png
चित्र 1: (ए) एक संधारित्र निश्चित-निश्चित किरणपुंज आरएफ एमईएमएस स्विचन, शंट में एक सीपीडब्ल्यू लाइन से जुड़ा हुआ है। (बी) एक ओमिक ब्रैकट आरएफ एमईएमएस स्विचन, श्रृंखला में एक माइक्रोस्ट्रिप लाइन से जुड़ा हुआ है।

एक रेडियो आवृति माइक्रोविद्युत् यांत्रिक प्रणाली (आरएफ एमईएमएस) एक माइक्रोइलेक्ट्रॉनिक प्रणाली है जिसमें इलेक्ट्रॉनिक घटक होते हैं जिनमें उप मिलीमीटर-आकार के भाग होते हैं जो रेडियो-आवृत्ति (आरएफ) फलनक्षमता प्रदान करते हैं।[1] विभिन्न प्रकार की आरएफ तकनीकों का उपयोग करके आरएफ फलनक्षमता को लागू किया जा सकता है। आरएफ एमईएमएस तकनीक के अलावा, III-V यौगिक अर्धचालक (GaAs, GaN, इंडियम फास्फाइड , InSb), फेराइट (चुंबक), फेरोइलेक्ट्रिक, सिलिकॉन-आधारित अर्धचालक (CMOS, SiC और SiGe), और निर्वात नलिका तकनीक आरएफ डिज़ाइनर के लिए उपलब्ध हैं। प्रत्येक आरएफ प्रौद्योगिकियां लागत, आवृत्ति, लाभ (इलेक्ट्रानिकी), बड़े पैमाने पर एकीकरण बड़े पैमाने पर एकीकरण, जीवनकाल, रैखिकता, रव आंकड़ा, इलेक्ट्रॉनिक संवेष्टन, विद्युत् से निपटने, विद्युत् उपभोग, परिपथ के बीच एक अलग व्यापार-संवृत, विश्वसनीयता, असभ्यता, आकार, विद्युत् की आपूर्ति, स्विचन समय और भार प्रदान करती हैं।

अवयव

विभिन्न प्रकार के आरएफ एमईएमएस घटक हैं, जैसे कि सीएमओएस समाकलनीय आरएफ एमईएमएस प्रतिध्वनिकारक और आत्म स्थिरता माइक्रोविद्युत् यांत्रिक प्रणाली दोलक और छोटे रूप कारक और कम चरण रव के साथ, आरएफ एमईएमएस इलेक्ट्रॉनिक समस्वरणीय प्रेरक , और आरएफ एमईएमएस स्विचन, स्विचन संधारित्र और वैरेक्टर।

स्विचन, स्विचन संधारित्र और वैरेक्टर

इस लेख में चर्चा किए गए घटक आरएफ एमईएमएस स्विचन, स्विचन संधारित्र और वैरेक्टर पर आधारित हैं। इन घटकों का उपयोग एफईटी और एचईएमटी स्विचन (सामान्य गेट विन्यास में एफईटी और एचईएमटी ट्रांजिस्टर), और पिन डायोड के अतिरिक्त किया जा सकता है। आरएफ एमईएमएस स्विचन, स्विचन संधारित्र और वैरेक्टर को प्रवर्तन विधि (स्थिर वैद्युत, विद्युत ऊष्मीय, स्थिर चुंबकीय, दाब वैद्युत) द्वारा, विक्षेपण के अक्ष द्वारा (पार्श्व, लंबवत), परिपथ विन्यास द्वारा (श्रृंखला परिपथ, शंट (विद्युत) ), कीलक (उपकरण) विन्यास द्वारा (ब्रैकट , निश्चित-निश्चित किरणपुंज (संरचना)), या संपर्क अंतराफलक द्वारा (संधारित्र , ओमिक संपर्क) द्वारा वर्गीकृत किया जाता है। स्थिर वैद्युत रूप से सक्रिय आरएफ एमईएमएस घटक कम सम्मिलन हानि और उच्च अलगाव, रैखिकता, विद्युत् से निपटने और क्यू कारक प्रदान करते हैं, विद्युत् उपभोग नहीं करते हैं, परन्तु एक उच्च नियंत्रण वोल्टता और वायुरुद्ध सील सिंगल-चिप संवेष्टन (पतली फिल्म आच्छादन, लिक्विड क्रिस्टल पॉलिमर या एलटीसीसी संवेष्टन) या वेफर-स्तरीय संवेष्टन (एनोडिक या काँच मुक्त वेफर आबंधन) की आवश्यकता होती है।

आरएफ एमईएमएस स्विचन आईबीएम रिसर्च, सैन जोस, कैलिफोर्निया, कैलिफोर्निया[2][3] ह्यूजेस रिसर्च लेबोरेटरीज, मालिबू, कैलिफोर्निया, सीए,[4] एनालॉग उपकरणेस, बोस्टान , एमए,[5] रेथियॉन, डलास, टेक्सास,[6][7] और रॉकवेल इंटरनेशनल साइंस, थाउजेंड ओक्स , सीए के सहयोग से अग्रणी थे।[8] एक संधारित्र निश्चित-निश्चित किरणपुंज आरएफ एमईएमएस स्विचन, जैसा कि चित्र 1 (ए) में दिखाया गया है, संक्षेप में एक माइक्रो-मशीन संधारित्र है जिसमें एक गतिशील शीर्ष इलेक्ट्रोड होता है, जो कि किरणपुंज होता है। यह सामान्यतः संचरण लाइन के साथ शंट में जुड़ा होता है और एक्स-बैंड से डब्ल्यू-बैंड (77 गीगाहर्ट्ज और 94 गीगाहर्ट्ज) आरएफ एमईएमएस घटकों में उपयोग किया जाता है। एक ओमिक कैंटिलीवर आरएफ एमईएमएस स्विचन, जैसा कि चित्र 1 (बी) में दिखाया गया है, शीर्ष-अवस्था में संधारित्र है, परन्तु निम्न-अवस्था में ओमिक संपर्क बनाता है। यह सामान्यतः संचरण लाइन के साथ श्रृंखला में जुड़ा होता है और एकदिश धारा में Ka-बैंड घटकों के लिए प्रयोग किया जाता है।

विद्युत् यांत्रिक दृष्टिकोण से, घटक एक अवमन्दित द्रव्यमान- स्प्रिंग प्रणाली के जैसे व्यवहार करते हैं, जो एक विद्युत बल द्वारा क्रियान्वित होता है। स्प्रिंग स्थिरांक किरणपुंज के आयामों के साथ-साथ यंग के मापांक, अवशिष्ट तनाव और किरणपुंज पदार्थ के पॉइसन अनुपात का एक फलन है। स्थिर वैद्युत बल धारिता और बायस वोल्टता का एक फलन है। स्प्रिंग स्थिरांक का ज्ञान अंतर्कर्ष वोल्टता की हाथ से गणना करने की अनुमति देता है, जो कि अंतर्कर्ष किरणपुंज के लिए आवश्यक अभिनतीकरण वोल्टता है, जबकि स्प्रिंग स्थिरांक और द्रव्यमान का ज्ञान स्विचन समय की हाथ से गणना करने की अनुमति देता है।

एक आरएफ परिप्रेक्ष्य से, घटक नगण्य प्रतिरोध और अधिष्ठापन के साथ एक श्रृंखला आरएलसी परिपथ के जैसे व्यवहार करते हैं। शीर्ष- और निम्न-अवस्था धारिता 50 फेमटोफैरड और 1.2 पीएफ के क्रम में हैं, जो मिलीमीटर तरंग परिपथ डिजाइन के लिए फलनात्मक मान हैं। स्विचन में सामान्यतः 30 या उससे अधिक का धारिता अनुपात होता है, जबकि स्विचन किए गए संधारित्र और वैरेक्टर का धारिता अनुपात लगभग 1.2 से 10 होता है। भारित Q कारक X-, Ku बैंड- और Ka-बैंड में 20 और 50 के बीच होता है।[9]

आरएफ एमईएमएस स्विचन संधारित्र कम धारिता अनुपात वाले संधारित्र निश्चित-निश्चित किरणपुंज स्विचन होते हैं। आरएफ एमईएमएस वैरेक्टर संधारित्र निश्चित-निश्चित किरणपुंज स्विचन हैं जो अंतर्कर्ष वोल्टता के नीचे अभिनत हैं। आरएफ एमईएमएस स्विचन के अन्य उदाहरण ओमिक कैंटिलीवर स्विचन हैं, और संधारित्र एकल ध्रुव N छोडना (एसपीएनटी) स्विचन अक्षीय अंतराल वॉबल इंजन पर आधारित हैं।[10]


अभिनतीकरण

आरएफ एमईएमएस घटक एक द्विध्रुवी गैर-पुनरागमन-शून्य प्रेरित वोल्टता का उपयोग करके स्थिर वैद्युत रूप से पक्षपाती हैं, जैसा कि चित्र 2 में दिखाया गया है, ताकि इलेक्ट्रानिकी के विफलता मोड से बचने[11] और उपकरण के जीवनकाल को बढ़ाने के लिए। परावैद्युत आवेश किरणपुंज पर स्थायी स्थिर वैद्युत बल लगाते हैं। डीसी प्रेरित वोल्टता के अतिरिक्त द्विध्रुवीय एनआरजेड प्रेरित वोल्टता का उपयोग परावैद्युत आवेशन से बचाता है, जबकि किरणपुंज पर लगाए गए स्थिर वैद्युत बल को बनाए रखा जाता है, क्योंकि स्थिर वैद्युत बल डीसी प्रेरित वोल्टता के साथ चतुर्भुज रूप से भिन्न होता है। स्थिर वैद्युत अभिनतीकरण का अर्थ कोई धारा प्रवाह नहीं है, जिससे आरएफ चोक (इलेक्ट्रानिकी) के अतिरिक्त उच्च-प्रतिरोधक अभिनतीकरण लाइनों का उपयोग किया जा सकता है।

File:RF MEMS BIASING.png
चित्र 2: संधारित्र निश्चित-निश्चित किरणपुंज आरएफ एमईएमएस स्विचन, स्विचन संधारित्र या वैराक्टर का स्थिर वैद्युत अभिनतीकरण।

संवेष्टन

आरएफ एमईएमएस घटक नाजुक होते हैं और वेफर लेवल संवेष्टन या एकल चिप संवेष्टन की आवश्यकता होती है जो हर्मेटिक माइक्रोवेव गुहा सीलिंग की अनुमति देती है। आंदोलन की अनुमति देने के लिए एक गुहा की आवश्यकता होती है, जबकि किरणपुंज पर पानी की बूंदों और अन्य दूषित पदार्थों द्वारा लगाए गए वैन डेर वाल्स बल द्वारा स्प्रिंग बल को रद्द करने से रोकने के लिए हर्मेटिकिटी की आवश्यकता होती है। आरएफ एमईएमएस स्विचन, स्विचन संधारित्र और वैरेक्टर को वेफर लेवल संवेष्टन का उपयोग करके पैक किया जा सकता है। बड़े मोनोलिथिक आरएफ एमईएमएस फिल्टर, फेज शिफ्टर्स और ट्यूनेबल प्रतिबाधा मिलान नेटवर्क के लिए एकल चिप संवेष्टन की जरूरत होती है।

वेफर-लेवल संवेष्टन को वेफर dicing से पहले लागू किया जाता है, जैसा कि चित्र 3 (ए) में दिखाया गया है, और यह एनोडिक, मेटल डिफ्यूजन, मेटल गलनक्रांतिक , काँच फ्रिट, पॉलीमर गोंद और सिलिकॉन फ्यूजन वेफर आबंधन पर आधारित है। वेफर-लेवल संवेष्टन तकनीक का चयन आरएफ एमईएमएस घटक की पदार्थ परतों के थर्मल विस्तार गुणांक और वेफर झुकने और अवशिष्ट तनाव को कम करने के साथ-साथ संरेखण और हर्मेटिकिटी आवश्यकताओं पर आधारित है। वेफर-लेवल संवेष्टन तकनीकों के लिए योग्यता के आंकड़े चिप आकार, हर्मेटिकिटी, प्रसंस्करण तापमान, (इन) संरेखण त्रुटियों और सतह खुरदरापन के लिए सहनशीलता हैं। एनोडिक और सिलिकॉन फ्यूजन आबंधन को एक मध्यवर्ती परत की आवश्यकता नहीं होती है, परन्तु सतह खुरदरापन को बर्दाश्त नहीं करते हैं। एक प्रवाहकीय मध्यवर्ती परत (प्रवाहकीय विभाजन रिंग) के साथ एक संबंध तकनीक पर आधारित वेफर-स्तरीय संवेष्टन तकनीक बैंडविड्थ (सिग्नल प्रोसेसिंग) और आरएफ एमईएमएस घटक के अलगाव को प्रतिबंधित करती है। सबसे सामान्य वेफर-लेवल संवेष्टन तकनीक एनोडिक और काँच फ्रिट वेफर आबंधन पर आधारित हैं। वर्टिकल इंटरकनेक्ट के साथ बढ़ाए गए वेफर-लेवल संवेष्टन तकनीक, त्रि-आयामी एकीकरण का अवसर प्रदान करते हैं।

सिंगल-चिप संवेष्टन, जैसा कि चित्र 3 (बी) में दिखाया गया है, वेफर डाइसिंग के बाद लागू किया जाता है, प्री-फैब्रिकेटेड सिरेमिक या कार्बनिक मिश्रण पैकेज, जैसे एलसीपी इंजेक्शन मोल्डेड पैकेज या एलटीसीसी पैकेज। प्री-फैब्रिकेटेड पैकेजों को क्लोजिंग, गिरना, टांकने की क्रिया या वेल्डिंग के माध्यम से हर्मेटिक कैविटी सीलिंग की आवश्यकता होती है। सिंगल-चिप संवेष्टन तकनीकों के लिए योग्यता के आंकड़े चिप आकार, हर्मेटिकिटी और प्रसंस्करण तापमान हैं।

File:RF MEMS PACKAGING.png
चित्र 3: (ए) वेफर-लेवल संवेष्टन। (बी) एक ओमिक कैंटिलीवर आरएफ एमईएमएस स्विचन की एकल चिप संवेष्टन।

माइक्रोफैब्रिकेशन

एक आरएफ एमईएमएस निर्माण प्रक्रिया सतह माइक्रोमशीनिंग तकनीकों पर आधारित है, और SiCr या टैंटलम नाइट्राइड पतली फिल्म प्रतिरोधों (TFR), मेटल-एयर-मेटल (MAM) संधारित्र, मेटल-इंसुलेटर-मेटल (MIM) संधारित्र और आरएफ के एकीकरण की अनुमति देती है। एमईएमएस घटक। एक आरएफ एमईएमएस निर्माण प्रक्रिया को विभिन्न प्रकार के वेफर्स पर महसूस किया जा सकता है: कंपाउंड अर्धचालक | III-V कंपाउंड सेमी-इंसुलेटिंग, बोरोसिलिकेट काँच, फ्युज़्ड सिलिका (क्वार्ट्ज), LCP, नीलम, और पैसिवेशन (रसायन विज्ञान) सिलिकॉन वेफर्स। जैसा कि चित्र 4 में दिखाया गया है, आरएफ एमईएमएस घटकों को 5 माइक्रोन संपर्क संरेखण त्रुटि के साथ 6 से 8 ऑप्टिकल लिथोग्राफी चरणों का उपयोग करके कक्षा 100 साफ कमरे में बनाया जा सकता है, जबकि अत्याधुनिक अखंड माइक्रोवेव एकीकृत परिपथ और रेडियो फ्रीक्वेंसी इंटीग्रेटेड परिपथ निर्माण प्रक्रियाओं में 13 से 25 लिथोग्राफी चरणों की आवश्यकता होती है।

File:RF MEMS FABRICATION PROCESS.png
चित्र 4: आरएफ एमईएमएस स्विचन, स्विचन संधारित्र, या वैराक्टर निर्माण प्रक्रिया

जैसा कि चित्र 4 में रेखांकित किया गया है, आवश्यक microfabrication कदम हैं:

  • अभिनतीकरण रेखाओं का निक्षेपण (चित्र 4, चरण 1)
  • इलेक्ट्रोड परत का जमाव (चित्र 4, चरण 2)
  • परावैद्युत परत का निक्षेपण (चित्र 4, चरण 3)
  • बलि स्पेसर का निक्षेपण (चित्र 4, चरण 4)
  • बीज की परत का निक्षेपण और बाद में विद्युत लेपन (चित्र 4, चरण 5)
  • किरणपुंज फोटोलिथोग्राफी, रिलीज और महत्वपूर्ण बिंदु सुखाने (चित्र 4, चरण 6)

बलिदान स्पेसर को हटाने के अपवाद के साथ, जिसके लिए महत्वपूर्ण बिंदु सुखाने की आवश्यकता होती है, निर्माण चरण सीएमओएस निर्माण प्रक्रिया चरणों के समान होते हैं। बेरियम स्ट्रोंटियम टाइटेनेट या लीड जिरकोनेट टाइटेनेट परावैद्युत और एमएमआईसी निर्माण प्रक्रियाओं के विपरीत आरएफ एमईएमएस निर्माण प्रक्रियाओं में इलेक्ट्रॉन किरणपुंज लिथोग्राफी, आणविक किरणपुंज एपिटॉक्सी या धातु कार्बनिक रासायनिक वाष्प जमाव की आवश्यकता नहीं होती है।

विश्वसनीयता

संपर्क अंतराफलक गिरावट ओमिक कैंटिलीवर आरएफ एमईएमएस स्विचन के लिए एक विश्वसनीयता मुद्दा बनती है, जबकि परावैद्युत आवेशन किरणपुंज स्टिक,[12] जैसा कि चित्र 5 (ए) में दिखाया गया है, और आर्द्रता प्रेरित किरणपुंज स्टिक्शन, जैसा कि चित्र 5 (बी) में दिखाया गया है, संधारित्र निश्चित-निश्चित किरणपुंज आरएफ एमईएमएस स्विचन के लिए एक विश्वसनीयता समस्या उत्पन्न करता है। प्रेरित वोल्टता को हटाने के बाद रिलीज करने के लिए किरणपुंज की अक्षमता है। एक उच्च संपर्क दबाव एक कम-ओमिक संपर्क का आश्वासन देता है या परावैद्युत आवेशन प्रेरित किरणपुंज स्टिचिंग को कम करता है। व्यावसायिक रूप से उपलब्ध ओमिक कैंटिलीवर आरएफ एमईएमएस स्विचन और संधारित्र निश्चित-निश्चित किरणपुंज आरएफ एमईएमएस स्विचन ने 100 मिलीवाट आरएफ इनपुट पावर पर 100 बिलियन चक्र से अधिक के जीवनकाल का प्रदर्शन किया है।[13][14] उच्च-शक्ति संचालन से संबंधित विश्वसनीयता के मुद्दों पर सीमक अनुभाग में चर्चा की गई है।

File:RF MEMS RELIABILITY.png
चित्र 5: (ए) [नीचे] परावैद्युत आवेशन प्रेरित किरणपुंज स्टिचिंग। (बी) [शीर्ष] आर्द्रता प्रेरित किरणपुंज स्टिचिंग।

अनुप्रयोग

आरएफ एमईएमएस गुंजयमान यंत्र फिल्टर और संदर्भ दोलक में लागू होते हैं।[15] आरएफ एमईएमएस स्विचन, स्विचन किए गए संधारित्र और वैरेक्टर चरणबद्ध सरणी में लागू होते हैं | इलेक्ट्रॉनिक स्कैन (उप) सरणी (फेज शिफ्ट मॉड्यूल) और सॉफ्टवेयर-परिभाषित रेडियो (पुन: कॉन्फ़िगर करने योग्य एंटेना, ट्यून करने योग्य संवृतपास छननी)।[16]


एंटेना

ध्रुवीकरण और विकिरण पैटर्न पुनः कॉन्फ़िगर करने योग्य एंटीना, और आवृत्ति ट्यूनेबिलिटी, सामान्यतः III-V अर्धचालक घटकों, जैसे स्विचन पर परिवर्तन स्विचन या वैरेक्टर डायोड को शामिल करके हासिल की जाती है। हालांकि, आरएफ एमईएमएस प्रौद्योगिकी द्वारा पेश किए गए कम सम्मिलन हानि और उच्च क्यू कारक का लाभ उठाने के लिए इन घटकों को आसानी से आरएफ एमईएमएस स्विचन और वैरेक्टर द्वारा प्रतिस्थापित किया जा सकता है। इसके अलावा, आरएफ एमईएमएस घटकों को कम-नुकसान वाले परावैद्युत सबस्ट्रेट्स पर मोनोलिथिक रूप से एकीकृत किया जा सकता है,[17] जैसे बोरोसिलिकेट काँच, फ्यूज्ड सिलिका या LCP, जबकि III-V यौगिक अर्ध-इन्सुलेटिंग और निष्क्रिय सिलिकॉन सबस्ट्रेट्स सामान्यतः हानिपूर्ण होते हैं और उच्च परावैद्युत स्थिरांक होता है। एंटीना दक्षता और एंटीना की बैंडविड्थ के लिए एक कम नुकसान स्पर्शरेखा और कम परावैद्युत स्थिरांक महत्वपूर्ण हैं।

पूर्व कला में 0.1–6 GHz आवृत्ति रेंज के लिए एक आरएफ एमईएमएस आवृत्ति ट्यून करने योग्य भग्न एंटीना शामिल है,[18] और आरएफ एमईएमएस का वास्तविक एकीकरण एक स्व-समान सीरपिंस्की गैसकेट एंटीना पर स्विचन करता है ताकि इसकी गुंजयमान आवृत्ति की संख्या बढ़ाई जा सके, इसकी सीमा को 8 GHz, 14 GHz और 25 GHz तक बढ़ाया जा सके,[19][20] 6 और 10 GHz के लिए एक आरएफ एमईएमएस विकिरण पैटर्न पुन: कॉन्फ़िगर करने योग्य सर्पिल एंटीना,[21] पैकेज्ड रैडेंट MEMS SPST-RMSW100 स्विचन पर आधारित 6–7 GHz आवृत्ति बैंड के लिए एक आरएफ एमईएमएस रेडिएशन पैटर्न रीकॉन्फ़िगर करने योग्य स्पाइरल एंटीना,[22] एक आरएफ एमईएमएस बहु बैंड Sierpinski भग्न एंटीना, फिर से एकीकृत आरएफ एमईएमएस स्विचन के साथ, 2.4 से 18 GHz तक विभिन्न बैंडों पर काम कर रहा है,[23] और एक 2-बिट का-बैंड आरएफ एमईएमएस आवृत्ति ट्यून करने योग्य स्लॉट एंटीना[24] सैमसंग ओम्निया डब्ल्यू आरएफ एमईएमएस एंटीना शामिल करने वाला पहला स्मार्टफोन था।[25]


फिल्टर

यदि एंटीना पर्याप्त चयनात्मकता (रेडियो) प्रदान करने में विफल रहता है, तो आरएफ संवृतपास छननी का उपयोग आउट-ऑफ-बैंड डेटा | आउट-ऑफ-बैंड अस्वीकृति को बढ़ाने के लिए किया जा सकता है। आउट-ऑफ-बैंड अस्वीकृति हस्तक्षेप (संचार) के प्रकाश में कम रव एम्पलीफायर और फ्रीक्वेंसी मिक्सर पर गतिशील रेंज आवश्यकता को कम करती है। लम्प्ड बल्क ध्वनि-विज्ञान वेव (BAW), सिरैमिक, सतह ध्वनिक तरंग , क्वार्ट्ज़ क्रिस्टल, और पतली फिल्म थोक ध्वनिक गुंजयमान यंत्र रेज़ोनेटर पर आधारित ऑफ-चिप आरएफ बैंडपास फिल्टर्स ने संचरण लाइन रेज़ोनेटर्स पर आधारित वितरित आरएफ बैंडपास फिल्टर्स की जगह ले ली है, जो सबस्ट्रेट्स पर कम नुकसान के साथ प्रिंट किए गए हैं। स्पर्शरेखा, या वेवगाइड गुहाओं पर आधारित।

ट्यून करने योग्य आरएफ बैंडपास फिल्टर स्विचन किए गए आरएफ बैंडपास फ़िल्टर बैंक ों पर एक महत्वपूर्ण आकार में कमी की पेशकश करते हैं। उन्हें III-V सेमीकंडक्टिंग वैरेक्टर, BST या PZT फेरोइलेक्ट्रिक और आरएफ एमईएमएस रेज़ोनेटर और स्विचन, स्विचन संधारित्र और वैरेक्टर, और यट्रियम आयरन गार्नेट फेराइट्स का उपयोग करके फलनान्वित किया जा सकता है। आरएफ एमईएमएस गुंजयमान यंत्र रेडियो-ऑन-ए-चिप | उच्च-क्यू अनुनादकों और कम-नुकसान वाले बैंडपास फिल्टर के ऑन-चिप एकीकरण की क्षमता प्रदान करते हैं। आरएफ एमईएमएस गुंजयमान यंत्रों का क्यू कारक 100-1000 के क्रम में है।[15] आरएफ एमईएमएस स्विचन, स्विचन संधारित्र और वैराक्टर तकनीक, ट्यून करने योग्य फ़िल्टर डिज़ाइनर को सम्मिलन हानि, रैखिकता, विद्युत् उपभोग, विद्युत् से निपटने, आकार और स्विचन समय के बीच एक सम्मोहक व्यापार-संवृत प्रदान करता है।[26]


फेज शिफ्टर्स

File:RF MEMS EIRP TIMES GT VERSUS N 1.png
अंजीर। 6: ईआईआरपी एक्स जीr/टी
File:RF MEMS EIRP VERSUS N.png
चित्र 7: EIRP बनाम एक निष्क्रिय उपश्रेणी में ऐन्टेना तत्वों की संख्या।

आरएफ एमईएमएस फेज शिफ्टर्स पर आधारित निष्क्रिय उप-सरणी का उपयोग सक्रिय इलेक्ट्रॉनिक रूप से स्कैन किए गए सरणी में टी/आर मॉड्यूल की मात्रा को कम करने के लिए किया जा सकता है। बयान को चित्र 6 में उदाहरणों के साथ चित्रित किया गया है: मान लें कि एक-बटा-आठ निष्क्रिय सबर्रे का उपयोग ट्रांसमिट के साथ-साथ निम्नलिखित विशेषताओं के साथ प्राप्त करने के लिए किया जाता है: f = 38 GHz, Gr = जीt = 10 dBi, BW = 2 GHz, Pt = 4 वाट। कम नुकसान (6.75 पीकोसैकन्ड) और आरएफ एमईएमएस चरण शिफ्टर्स की अच्छी पावर हैंडलिंग (500 मेगावाट) 40 डब्ल्यू और जी के ईआईआरपी की अनुमति देती है।r/T of 0.036 1/K. ईआईआरपी, जिसे पावर-एपर्चर उत्पाद भी कहा जाता है, ट्रांसमिट गेन, जी का उत्पाद हैt, और संचारित शक्ति, पीt. जीr/ टी प्राप्त लाभ और एंटीना रव तापमान का भागफल है। एक उच्च EIRP और Gr/ टी लंबी दूरी की पहचान के लिए एक शर्त है। ईआईआरपी और जीr/ टी प्रति सबएरे और अधिकतम स्कैनिंग कोण के एंटीना तत्वों की संख्या का एक फलन है। EIRP या EIRP x G को अनुकूलित करने के लिए प्रति उपश्रेणियों में एंटीना तत्वों की संख्या को चुना जाना चाहिएr/T उत्पाद, जैसा कि चित्र 7 और चित्र 8 में दिखाया गया है। रडार समीकरण का उपयोग उस अधिकतम सीमा की गणना के लिए किया जा सकता है जिसके लिए रिसीवर के इनपुट पर सिग्नल-टू-रव अनुपात के 10 dB के साथ लक्ष्यों का पता लगाया जा सकता है।

जिसमें केB Boltzmann स्थिरांक है, λ मुक्त-अंतरिक्ष तरंग दैर्ध्य है, और σ लक्ष्य का रडार क्रॉस-सेक्शन है। निम्नलिखित लक्ष्यों के लिए श्रेणी मान तालिका 1 में सारणीबद्ध हैं: 10 सेमी (σ = π a) की त्रिज्या, a के साथ एक Mie सिद्धांत2), 10 सेमी (σ = 12 a) के पहलू आकार, a, के साथ एक डायहेड्रल (विमान) कोने परावर्तक4/मिनट2), कार का पिछला हिस्सा (σ = 20 मीटर2) और एक गैर-आक्रमणकारी लड़ाकू जेट के लिए (σ = 400 m2).

Table 1: Maximum Detectable Range
(SNR = 10 dB)
RCS (m2) Range (m)
Sphere 0.0314 10
Rear of Car 20 51
Dihedral Corner Reflector 60.9 67
Fighter Jet 400 107
अंजीर। 8: ईआईआरपी एक्स जीr/ टी बनाम एक निष्क्रिय उपश्रेणी में एंटीना तत्वों की संख्या।

आरएफ एमईएमएस चरण शिफ्टर्स उच्च प्रभावी आइसोट्रोपिक रूप से विकीर्ण शक्ति और उच्च जी के साथ लेंस (प्रकाशिकी) , चिंतनशील सरणी एंटीना, सबएरे और स्विचन beamforming नेटवर्क जैसे वाइड-एंगल निष्क्रिय इलेक्ट्रॉनिक रूप से स्कैन किए गए सरणियों को सक्षम करते हैं।r/टी। निष्क्रिय इलेक्ट्रॉनिक रूप से स्कैन किए गए सरणियों में पूर्व कला में ओमिक कैंटिलीवर आरएफ एमईएमएस स्विचन के आधार पर सोलह 5-बिट रिफ्लेक्ट-टाइप आरएफ एमईएमएस चरण शिफ्टर्स द्वारा संश्लेषित एक लाइन स्रोत द्वारा खिलाया गया एक्स-बैंड निरंतर अनुप्रस्थ स्टब (सीटीएस) सरणी शामिल है।[27][28] एक एक्स-बैंड 2-डी लेंस सरणी जिसमें समानांतर-प्लेट वेवगाइड (विद्युत चुंबकत्व) शामिल है और 25,000 ओमिक कैंटिलीवर आरएफ एमईएमएस स्विचन की विशेषता है,[29] और एक आरएफ एमईएमएस SP4T स्विचन और एक रोटमैन लेंस फोकल प्लेन#फोकल पॉइंट और प्लेन स्कैनर पर आधारित W-बैंड स्विचन किरणपुंजफॉर्मिंग नेटवर्क।[30]

आरएफ एमईएमएस फेज शिफ्टर्स के अतिरिक्त ट्रू-टाइम-डिले टीटीडी फेज शिफ्टर्स का उपयोग अल्ट्रा वाइड बैंड राडार तरंग को संबद्ध उच्च श्रेणी के रिज़ॉल्यूशन की अनुमति देता है, और किरणपुंज स्क्विंटिंग या आवृत्ति स्कैनिंग से बचता है। टीटीडी फेज शिफ्टर्स को स्विचन-लाइन सिद्धांत का उपयोग करके डिजाइन किया गया है[8][31][32] या वितरित लोड-लाइन सिद्धांत।[33][34][35][36][37][38] स्विचन-लाइन टीटीडी फेज शिफ्टर्स वितरित भारित-लाइन टीटीडी फेज शिफ्टर्स को प्रति डेसिबल रव आंकड़े में समय की देरी के संदर्भ में, विशेष रूप से एक्स-बैंड तक आवृत्तियों पर बेहतर प्रदर्शन करते हैं, परन्तु स्वाभाविक रूप से डिजिटल होते हैं और कम-नुकसान और उच्च-अलगाव एसपीएनटी स्विचन की आवश्यकता होती है। वितरित लोड-लाइन टीटीडी चरण शिफ्टर्स, हालांकि, अनुरूप या डिजिटल रूप से और छोटे रूप के कारकों में महसूस किए जा सकते हैं, जो सबरे स्तर पर महत्वपूर्ण है। एनालॉग फेज शिफ्टर्स एकल बायस लाइन के माध्यम से पक्षपाती होते हैं, जबकि मल्टीबिट डिजिटल फेज शिफ्टर्स को समानांतर स्तर पर जटिल रूटिंग योजनाओं के साथ समानांतर बस की आवश्यकता होती है।

संदर्भ

  1. Lucyszyn, S. (2004). "रेडियो फ्रीक्वेंसी माइक्रोइलेक्ट्रोमैकेनिकल सिस्टम टेक्नोलॉजी की समीक्षा". IEE Proceedings - Science, Measurement and Technology. 151 (2): 93–103. CiteSeerX 10.1.1.535.8466. doi:10.1049/ip-smt:20040405. ISSN 1350-2344.
  2. K. E. Petersen: "Micro-Mechanical Membrane Switches on Silicon," IBM J. Res. & Dev., vol. 23, no. 4, pp. 376-385, Jul. 1979
  3. K. E. Petersen: "Silicon as a Mechanical Material," Proc. IEEE, vol. 70, no. 5, pp. 420-457, May 1982
  4. L. E. Larson: “Micro-Machined Switch and Method of Fabrication,” U.S. Patent 5,121,089, Nov. 1, 1990
  5. P. M. Zavracky, S. Majumder, and N. E. McGruer: "Micromechanical Switches Fabricated Using Nickel Surface Micromachining," J. Microelectromech. Syst., vol. 6, no. 1, pp. 3-9, Mar. 1997
  6. C. L. Goldsmith, B. M. Kanack, T. Lin, B. R. Norvell, L. Y. Pang, B. Powers, C. Rhoads, D. Seymour: "Micromechanical Microwave Switching". U.S. Patent 5,619,061, Oct. 31, 1994
  7. C. L. Goldsmith, Z. Yao, S. Eshelman, and D. Denniston: "Performance of Low-Loss RF MEMS Capacitive Switches," IEEE Microwave Wireless Compon. Lett., vol. 8, no. 8, pp. 269-271, Aug. 1998
  8. 8.0 8.1 J. B. Hacker, R. E. Mihailovich, M. Kim, and J. F. DeNatale: “A Ka-band 3-Bit RF MEMS True-Time-Delay Network,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 1, pp. 305–308, Jan. 2003
  9. M. P. J. Tiggelman, K. Reimann, F. Van Rijs, J. Schmitz, and R. J. E. Hueting, "On the trade-off between quality factor and tuning ratio in tunable high-frequency capacitors," IEEE Trans. El. Dev.56(9) pp. 1218-2136 (2009).
  10. S. Pranonsatit, A. S. Holmes, I. D. Robertson and S. Lucyszyn: "Single-Pole Eight-Throw RF MEMS Rotary Switch," IEEE/ASME J. Microelectromech. Syst., vol. 15, no. 6, pp. 1735-1744, Dec. 2006
  11. J. R. Reid and R. T. Webster: "Measurements of Charging in Capacitive Microelectromechanical Switches," Electronics Letters, vol. 38, no. 24, pp. 1544-1545, Nov. 2002
  12. Samuel Mellé, Student Member IEEE, David De Conto, David Dubuc, Member IEEE, Katia Grenier, Member IEEE, Olivier Vendier, Jean-Luc Muraro, Jean-Louis Cazaux, Senior Member IEEE, and Robert Plana Member IEEE : Reliability Modeling of Capacitive RF MEMS, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 11, NOVEMBER 2005
  13. H. S. Newman, J. L. Ebel, D. Judy, and J. Maciel: "Lifetime Measurements on a High-Reliability RF MEMS Contact Switch," IEEE Microwave Wireless Compon. Lett., vol. 18, no. 2, pp. 100-102, Feb. 2008
  14. C. Goldsmith, J. Maciel, and J. McKillop: "Demonstrating reliability," IEEE Microwave Magazine, vol. 8, no. 6, pp. 56-60, Dec. 2007
  15. 15.0 15.1 C. Nguyen: “MEMS Technology for Timing and Frequency Control,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 54, no. 2, pp. 251–270, Feb. 2007
  16. G. M. Rebeiz: "RF MEMS, Theory, Design and Technology," John Wiley & Sons, 2003
  17. Aguilar-Armenta, Christian James; Porter, Stuart J. (March 2015). "एक पीसीबी पर चरणबद्ध ऐरे एंटेना के साथ अखंड एकीकरण के लिए कैंटिलीवर आरएफ-एमईएमएस". International Journal of Electronics. 102 (12): 1978–1996. Bibcode:2015IJE...102.1978A. doi:10.1080/00207217.2015.1017843. S2CID 109549855.
  18. D. E. Anagnostou et al. "Fractal Antennas with RF-MEMS Switches for Multiple Frequency Applications", in IEEE APS/URSI International Symposium, San Antonio, TX, June 2002, vol. 2, pp.22-25
  19. D. E. Anagnostou, G. Zheng, M. Chryssomallis, J. Lyke, G. Ponchak, J. Papapolymerou, and C. G. Christodoulou, "Design, Fabrication and Measurements of an RF-MEMS-Based Self-Similar Re-configurable Antenna", IEEE Transactions on Antennas & Propagation, Special Issue on Multifunction Antennas and Antenna Systems, Vol. 54, Issue 2, Part 1, Feb. 2006, pp.422 – 432
  20. D. E. Anagnostou, G. Zheng, J. Papapolymerou and C. G. Christodoulou, U.S. Patent 7,589,674, "Reconfigurable multifrequency antenna with RF-MEMS switches", Sept. 15, 2009.
  21. C. Jung, M. Lee, G. P. Li, and F. D. Flaviis: “Reconfigurable Scan-Beam Single-Arm Spiral Antenna Integrated with RF MEMS Switches,” IEEE Trans. Antennas Propag., vol. 54, no. 2, pp. 455–463, Feb. 2006
  22. G. H. Huff and J. T. Bernhard: “Integration of Packaged RF MEMS Switches with Radiation Pattern Reconfigurable Square Spiral Microstrip Antennas,” IEEE Trans. Antennas Propag., vol. 54, no. 2, pp. 464–469, Feb. 2006
  23. N. Kingsley, D. E. Anagnostou, M. Tentzeris, and J. Papapolymerou: “RF MEMS Sequentially Reconfigurable Sierpinski Antenna on a Flexible Organic Substrate with Novel DC-Biasing Technique,” IEEE/ASME J. Microelectromech. Syst., vol. 16, no. 5, pp. 1185–1192, Oct. 2007
  24. K. Van Caekenberghe and K. Sarabandi: "A 2-Bit Ka-Band RF MEMS Frequency Tunable Slot Antenna," IEEE Antennas and Wireless Propagation Letters, vol. 7, pp. 179-182, 2008
  25. "WTF is... RF-MEMS?"
  26. R. M. Young, J. D. Adam, C. R. Vale, T. T. Braggins, S. V. Krishnaswamy, C. E. Milton, D. W. Bever, L. G. Chorosinski, Li-Shu Chen, D. E. Crockett, C. B. Freidhoff, S. H. Talisa, E. Capelle, R. Tranchini, J. R. Fende, J. M. Lorthioir, A. R. Tories: “Low-Loss Bandpass RF Filter Using MEMS Capacitance Switches to Achieve a One-Octave Tuning Range and Independently Variable Bandwidth,” IEEE MTT-S International Microwave Symposium Digest, vol. 3, pp. 1781-1784, Jun. 2003
  27. J. J. Lee, C. Quan, and B. M. Pierce: “Low-Cost 2-D Electronically Scanned Array with Compact CTS Feed and MEMS Phase Shifters,” U.S. Patent 6 677 899, Jan. 13, 2004
  28. C. Quan, J. J. Lee, B. M. Pierce, and R. C. Allison: “Wideband 2-D Electronically Scanned Array with Compact CTS Feed and MEMS Phase Shifters,” U.S. Patent 6 822 615, Nov. 23, 2004
  29. J. J. Maciel, J. F. Slocum, J. K. Smith, and J. Turtle: “MEMS Electronically Steerable Antennas for Fire Control Radars,” IEEE Aerosp. Electron. Syst. Mag, pp. 17–20, Nov. 2007
  30. J. Schoebel, T. Buck, M. Reimann, M. Ulm, M. Schneider, A. Jourdain, G. J. Carchon, and H. A. C. Tilmans: "Design Considerations and Technology Assessment of Phased Array Antenna Systems with RF MEMS for Automotive Radar Applications," IEEE Trans. Microwave Theory Tech., vol. 53, no. 6, pp. 1968-1975, Jun. 2005
  31. G. L. Tan, R. E. Mihailovich, J. B. Hacker, J. F. DeNatale, and G. M. Rebeiz: “Low-loss 2- and 4-Bit TTD MEMS Phase Shifters Based on SP4T Switches,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 1, pp. 297–304, Jan. 2003
  32. C. D. Nordquist, C. W. Dyck, G. M. Kraus, I. C. Reines, C. L. Goldsmith, W. D. Cowan, T. A. Plut, F. Austin, P. S. Finnegan, M. H. Ballance, and C. T. Sullivan: “A DC to 10 GHz 6-Bit RF MEMS Time Delay Circuit,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 305–307, May 2006
  33. N. S. Barker and G. M. Rebeiz, “Optimization of distributed MEMS phase shifters,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 299–302, 1999
  34. A. S. Nagra and R. A. York, “Distributed Analog Phase Shifters with Low Insertion Loss: ” IEEE Trans. Microw. Theory Tech., vol. 47, no. 9, pp. 1705–1711, Sep. 1999
  35. J. Perruisseau-Carrier, R. Fritschi, P. Crespo-Valero, and A. K. Skrivervik: “Modeling of Periodic Distributed MEMS Application to the Design of Variable True-Time-Delay Lines,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 383–392, Jan. 2006
  36. B. Lakshminarayanan and T. M. Weller: “Design and Modeling of 4-Bit Slow-Wave MEMS Phase Shifters,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 120–127, Jan. 2006
  37. B. Lakshminarayanan and T. M. Weller: “Optimization and Implementation of Impedance-Matched True-Time-Delay Phase Shifters on Quartz Substrate,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 2, pp. 335–342, Feb. 2007
  38. K. Van Caekenberghe and T. Vaha-Heikkila: "An Analog RF MEMS Slotline True-Time-Delay Phase Shifter," IEEE Trans. Microw. Theory Tech., vol. 56, no. 9, pp. 2151-2159, Sep. 2008


पढ़ना

श्रेणी:माइक्रोइलेक्ट्रॉनिक और माइक्रोइलेक्ट्रॉनिक प्रणाली