आयरिंग समीकरण
आयरिंग समीकरण (कभी-कभी आयरिंग-पोलैनी समीकरण के रूप में भी जाना जाता है) तापमान के विरुद्ध प्रतिक्रिया दर में परिवर्तन का वर्णन करने के लिए रासायनिक कैनेटीक्स में उपयोग किया जाने वाला समीकरण है। इसे 1935 में हेनरी आइरिंग (रसायनज्ञ), मेरेडिथ ग्वेने इवांस और माइकल पोलानी द्वारा लगभग एक साथ विकसित किया गया था। समीकरण संक्रमण अवस्था सिद्धांत से अनुसरण करता है, जिसे सक्रिय-जटिल सिद्धांत के रूप में भी जाना जाता है। यदि कोई सक्रियता की निरंतर एन्थैल्पी और सक्रियण की निरंतर एन्ट्रॉपी मानता है, तो एरेनियस समीकरण अनुभवजन्य होने और सांख्यिकीय यांत्रिक औचित्य के आधार पर आयरिंग समीकरण के अतिरिक्त, आइरिंग समीकरण अनुभवजन्य अरहेनियस समीकरण के समान है।
सामान्य रूप
आइरिंग-पोलैनी समीकरण का सामान्य रूप कुछ सीमा तक अरहेनियस समीकरण जैसा दिखता है:
संचरण गुणांक अधिकांशतः एक के बराबर माना जाता है क्योंकि यह दर्शाता है कि संक्रमण स्थिति के माध्यम से प्रवाह का कितना अंश संक्रमण स्थिति को पार किए बिना उत्पाद के लिए आगे बढ़ता है। तो, एक के बराबर संचरण गुणांक का अर्थ है कि संक्रमण स्थिति सिद्धांत की मौलिक नो-रिक्रॉसिंग धारणा पूरी तरह से है। चुकीं, सामान्यतः एक नहीं है क्योंकि (i) हाथ में प्रक्रिया के लिए चुना गया प्रतिक्रिया समन्वय सामान्यतः सही नहीं होता है और (ii) कई बैरियर-क्रॉसिंग प्रक्रियाएं प्रकृति में कुछ सीमा तक या यहां तक कि दृढ़ता से फैलाने वाली होती हैं। उदाहरण के लिए, गैस हाइड्रेट में मीथेन होपिंग का संचरण गुणांक साइट से आसन्न खाली साइट पर 0.25 और 0.5 के बीच होता है।[1] विशिष्ट रूप से, प्रतिक्रियाशील प्रवाह सहसंबंध फलन (RFCF) सिमुलेशन स्पष्ट रूप से गणना करने के लिए किए जाते हैं RFCF में परिणामी पठार से। इस दृष्टिकोण को बेनेट-चैंडलर दृष्टिकोण के रूप में भी जाना जाता है, जो मानक संक्रमण स्थिति सिद्धांत-आधारित दर स्थिरांक के लिए गतिशील सुधार उत्पन्न करता है।
इसे फिर से लिखा जा सकता है:[2]
- = प्रतिक्रिया दर स्थिर
- = पूर्ण तापमान
- = सक्रियता की तापीय धारिता
- = गैस स्थिरांक
- = संचरण गुणांक
- = बोल्ट्जमैन स्थिरांक = आर/एनA, एनA = अवोगाद्रो स्थिरांक
- = प्लांक नियतांक
- = सक्रियता की एन्ट्रापी
यदि कोई सक्रियण की निरंतर तापीय धारिता, सक्रियण की निरंतर एन्ट्रापी और निरंतर संचरण गुणांक मानता है, तो इस समीकरण का उपयोग इस प्रकार किया जा सकता है: निश्चित रासायनिक प्रतिक्रिया विभिन्न तापमानों पर की जाती है और प्रतिक्रिया दर निर्धारित की जाती है। का कथानक बनाम ढलान के साथ सीधी रेखा देता है जिससे सक्रियण की तापीय धारिता प्राप्त की जा सकती है और अवरोधन के साथ जिससे सक्रियता की एन्ट्रापी प्राप्त होती है।
सटीकता
संक्रमण अवस्था सिद्धांत को संचरण गुणांक के मूल्य की आवश्यकता होती है, जिसे कहा जाता है उस सिद्धांत में। इस मूल्य को अधिकांशतः एकता के रूप में लिया जाता है (अर्थात, संक्रमण अवस्था से गुजरने वाली प्रजातियाँ हमेशा सीधे उत्पादों के लिए आगे बढ़ें AB और कभी भी अभिकारकों पर वापस न जाएं A और B). का मान निर्दिष्ट करने से बचने के लिए , दर स्थिरांक की तुलना कुछ निश्चित संदर्भ तापमान पर दर स्थिरांक के मान से की जा सकती है (अर्थात, ) जो समाप्त करता है परिणामी अभिव्यक्ति में कारक यदि कोई मानता है कि संचरण गुणांक तापमान से स्वतंत्र है।
त्रुटि प्रचार सूत्र
के लिए अनिश्चितता सूत्रों का प्रचार और प्रकाशित हो चुकी है।. [3]
टिप्पणियाँ
- ↑ Peters, B.; Zimmermann, N. E. R.; Beckham, G. T.; Tester, J. W.; Trout, B. L. (2008). "जल-रिक्ति सहायता तंत्र से प्राकृतिक गैस हाइड्रेट्स में मीथेन विसरण की पथ नमूनाकरण गणना". J. Am. Chem. Soc. 130 (51): 17342–17350. doi:10.1021/ja802014m. hdl:11420/6551. PMID 19053189.
- ↑ Espenson, James H. (1981). रासायनिक कैनेटीक्स और प्रतिक्रिया तंत्र. McGraw-Hill. p. 117. ISBN 0-07-019667-2.
- ↑ Morse, Paige M.; Spencer, Michael D.; Wilson, Scott R.; Girolami, Gregory S. (1994). "A Static Agostic α-CH-M Interaction Observable by NMR Spectroscopy: Synthesis of the Chromium(II) Alkyl [Cr2(CH2SiMe3)6]2- and Its Conversion to the Unusual "Windowpane" Bis(metallacycle) Complex [Cr(κ2C,C'-CH2SiMe2CH2)2]2-". Organometallics. 13: 1646. doi:10.1021/om00017a023.
संदर्भ
- Evans, M.G.; Polanyi M. (1935). "Some applications of the transition state method to the calculation of reaction velocities, especially in solution". Trans. Faraday Soc. 31: 875–894. doi:10.1039/tf9353100875.
- Eyring, H. (1935). "The Activated Complex in Chemical Reactions". J. Chem. Phys. 3 (2): 107–115. Bibcode:1935JChPh...3..107E. doi:10.1063/1.1749604.
- Eyring, H.; Polanyi, M. (2013-11-01). "On Simple Gas Reactions". Zeitschrift für Physikalische Chemie. 227 (11): 1221–1246. doi:10.1524/zpch.2013.9023. ISSN 2196-7156. S2CID 119992451.
- Laidler, K.J.; King M.C. (1983). "The development of Transition-State Theory". J. Phys. Chem. 87 (15): 2657–2664. doi:10.1021/j100238a002.
- Polanyi, J.C. (1987). "Some concepts in reaction dynamics". Science. 236 (4802): 680–690. Bibcode:1987Sci...236..680P. doi:10.1126/science.236.4802.680. PMID 17748308. S2CID 19914017.
- Chapman, S. and Cowling, T.G. (1991). "The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases" (3rd Edition). Cambridge University Press, ISBN 9780521408448