फर्मीओनिक क्षेत्र

From Vigyanwiki

परिमाण क्षेत्र सिद्धांत, एक फर्मीओनिक क्षेत्र एक परिमाण क्षेत्र है जिसका परिमाण फर्मियन होता है; अर्थात्, वे फर्मी-डिराक सांख्यिकी का अनुसरण करते हैं। बोसोनिक क्षेत्र के विहित विनिमय संबंधों के अतिरिक्त फर्मीओनिक क्षेत्र विहित प्रतिसंक्रमण सम्बन्ध का अनुसरण करते हैं।

फ़र्मोनिक क्षेत्र का सबसे प्रमुख उदाहरण डिराक क्षेत्र है, जो चक्रण (भौतिकी) -1/2: विद्युदणु, प्रोटॉन, क्वार्क आदि के साथ फ़र्मियन का वर्णन करता है। डायराक क्षेत्र को 4-घटक चक्रण या एक के रूप में वर्णित किया जा सकता है। 2-घटक कुंज चक्रणों की जोड़ी। चक्रण-1/2 मेजराना फ़र्मियन, जैसे कि काल्पनिक न्यूट्रलिनो, को या तो आश्रित 4-घटक मेजराना चक्रणों या एकल 2-घटक कुंज चक्रणों के रूप में वर्णित किया जा सकता है। यह ज्ञात नहीं है कि न्युट्रीनो एक मेजराना फर्मियन है या एक डिराक फर्मियन; दोहरे संस्करण क्षय का अवलोकन अल्प न्यूट्रिनो दोहरा संस्करण क्षय| अल्प न्यूट्रिनो दोहरा-संस्करण क्षय प्रयोगात्मक रूप से इस प्रश्न का समाधान करेगा।

मूलभूत गुण

नि: शुल्क (गैर-अंतःक्रियात्मक) फ़र्मोनिक क्षेत्र विहित प्रति संक्रमण संबंधों का अनुसरण करते हैं; अथार्त बोसोनिक या मानक परिमाण यांत्रिकी के प्रतिरोध क्रम विनिमेयक [a, b] = ab - ba के अतिरिक्त क्रम विनिमेयक {a, b} = ab + ba को सम्मिलित करें। वे संबंध भी अंतःक्रियात्मक चित्र में परस्पर क्रिया करने वाले क्षेत्रों के लिए धारण करते हैं, जहाँ क्षेत्र समय के साथ विकसित होते हैं जैसे कि मुक्त और अंतःक्रिया के प्रभाव क्षेत्रों के विकास में कूटबद्ध होते हैं।

यह ये प्रतिसंक्रमण संबंध हैं जो क्षेत्र परिमाण के लिए फर्मी-डिराक आंकड़े दर्शाते हैं। वे पाउली अपवर्जन सिद्धांत में भी परिणत होते हैं: दो फेरमोनिक कण एक ही समय में एक ही अवस्था में नहीं रह सकते।

डायराक क्षेत्र

चक्रण-1/2 फ़र्मियन क्षेत्र का प्रमुख उदाहरण डिराक क्षेत्र है (पॉल डिराक के नाम पर), और इसके द्वारा निरूपित . एक मुक्त चक्रण 1/2 कण के लिए गति का समीकरण डायराक समीकरण है,

कहाँ गामा आव्यूह हैं और द्रव्यमान है। सबसे सरल संभव समाधान इस समीकरण के लिए समतल तरंग समाधान हैं, और . ये समतल तरंग समाधान के फूरियर घटकों के लिए एक आधार बनाते हैं , तरंग कार्य के सामान्य विस्तार के लिए निम्नानुसार अनुमति देता है,

यू और वी चक्रणों हैं, जिन्हें चक्रण, एस और चक्रणों अनुक्रमणिका द्वारा अंकित किया गया है . विद्युदणु के लिए, एक चक्रण 1/2 कण, s = +1/2 या s=−1/2। लॉरेंज अपरिवर्तनीय एकीकरण उपाय होने का परिणाम ऊर्जा कारक है। दूसरे परिमाणीकरण में, एक संक्रियक के लिए पदोन्नत किया जाता है, इसलिए इसके फूरियर प्रणाली के गुणांक भी संक्रियक होने चाहिए। इस तरह, और संचालिका हैं। इन संक्रियकों के गुणों को क्षेत्र के गुणों से पहचाना जा सकता है। और प्रतिसंक्रमण संबंधों का अनुसरण करें:

संक्रियकों को फर्मी-डिराक सांख्यिकी के साथ संगत बनाने के लिए हम एक प्रतिसंक्रमण सम्बन्ध (एक विहित विनिमय सम्बन्ध के विपरीत जैसा कि हम बोसोनिक क्षेत्र के लिए करते हैं) लगाते हैं। के लिए विस्तार लगाकर और , गुणांकों के लिए प्रतिसंक्रमण संबंधों की गणना की जा सकती है।

एक तरह से गैर-सापेक्षिक विनाश और निर्माण संक्रियकों और उनके क्रम विनिमेयक के अनुरूप, ये बीजगणित भौतिक व्याख्या की ओर ले जाते हैं जो संवेग p और प्रचक्रण s का एक फ़र्मियन बनाता है, और संवेग q और चक्रण r का प्रतिपक्षी बनाता है। सामान्य क्षेत्र अब फ़र्मियन और प्रतिरोध फर्मियन बनाने के लिए सभी संभावित चक्रण और गति पर भारित (ऊर्जा कारक द्वारा) योग के रूप में देखा जाता है। इसका संयुग्मी क्षेत्र, , विपरीत है, सभी संभावित घुमावों पर एक भारित योग और विलोपन और प्रतिपक्षी को नष्ट करने के लिए संवेग।

क्षेत्र विधाओं को समझने और संयुग्मी क्षेत्र को परिभाषित करने के साथ, फर्मीओनिक क्षेत्रों के लिए लॉरेंज अपरिवर्तनीय परिमाण का निर्माण करना संभव है। सबसे सरल परिमाण है . यह चुनने का कारण बनता है साफ़। ऐसा इसलिए है क्योंकि सामान्य लोरेंत्ज़ आरंभहो जाता है एकात्मक परिवर्तन नहीं है इसलिए परिमाण इस तरह के परिवर्तनों के अनुसार अपरिवर्तनीय नहीं होगा, इसलिए सम्मिलित करना इसके लिए ठीक करना है। अन्य संभावित गैर-शून्य लोरेंत्ज़ सहप्रसरण परिमाण, एक समग्र संयुग्मन तक, फर्मीओनिक क्षेत्रों से निर्माण योग्य है .

चूंकि इन परिमाणों के रैखिक संयोजन भी लोरेंत्ज़ अपरिवर्तनीय हैं, यह स्वाभाविक रूप से डिराक क्षेत्र के लिए लैग्रैन्जियन घनत्व की ओर जाता है, इस आवश्यकता से कि प्रणालीके यूलर-लैग्रेंज समीकरण डायराक समीकरण को पुनर्प्राप्त करें।

इस तरह की अभिव्यक्ति के सूचकांकों को दबा दिया गया है। जब पुन: प्रस्तुत किया जाता है तो पूर्ण अभिव्यक्ति होती है

हैमिल्टनियन (परिमाण यांत्रिकी) (ऊर्जा) घनत्व का निर्माण पहले संवेग को विहित रूप से संयुग्मित परिभाषित करके भी किया जा सकता है , बुलाया

उस परिभाषा के साथ हैमिल्टनियन घनत्व है:

कहाँ अंतरिक्ष जैसे निर्देशांक का मानक ढाल है, और अंतरिक्ष की तरह का एक संचालन है आव्यूह। यह आश्चर्य की बात है कि हैमिल्टनियन घनत्व समय के व्युत्पन्न पर निर्भर नहीं करता है सीधे, लेकिन अभिव्यक्ति सही है।

के लिए पद दिया है हम फ़र्मियन क्षेत्र के लिए फेनमैन प्रचारक का निर्माण कर सकते हैं:

हम उनके प्रतिरोध क्रमविनिमेय प्रकृति के कारण माइनस साइन वाले फर्मों के लिए समय-क्रमित उत्पाद को परिभाषित करते हैं

उपरोक्त समीकरण उत्पन्न में फ़र्मियन क्षेत्र के लिए हमारे सतह तरंग विस्तार को नियंत्रण करना:

जहां हमने फेनमैन द्रूमावशेष अंकन को नियोजित किया है। यह परिणाम कारक के बाद से समझ में आता है

पर अभिनय करने वाले संक्रियक का ठीक उलटा है डिराक समीकरण में। ध्यान दें कि क्लेन-गॉर्डन समीकरण क्षेत्र के लिए फेनमैन प्रचारक की यही संपत्ति है। चूँकि सभी उचित अवलोकनीय (जैसे ऊर्जा, आवेश, कण संख्या, आदि) सम संख्या वाले फ़र्मियन क्षेत्रों से निर्मित होती हैं, प्रकाश शंकु के बाहर अवलोकनीय अवधि बिंदुओं पर किन्हीं दो अवलोकनों के बीच रूपांतरण संबंध गायब हो जाता है। जैसा कि हम प्राथमिक परिमाण यांत्रिकी से जानते हैं कि दो एक साथ आने-जाने वाले अवलोकनीय को एक साथ मापा जा सकता है। इसलिए हमने डिराक क्षेत्र के लिए लोरेंट्ज़ निश्चरता को सही ढंग से कार्यान्वित किया है, और कार्य-कारण को संरक्षित किया है।

अधिक जटिल क्षेत्र सिद्धांतों में बातचीत सम्मिलित है (जैसे कि युकावा सिद्धांत, या परिमाण बिजली का गतिविज्ञान) का भी विश्लेषण किया जा सकता है, विभिन्न क्रम बिगाडने वाले और क्रम न बिगाडने करने वाले प्रणाली से।

डायराक क्षेत्र मानक प्रतिरूप का एक महत्वपूर्ण घटक है।

यह भी देखें

संदर्भ

  • Edwards, D. (1981). "The Mathematical Foundations of Quantum Field Theory: Fermions, Gauge Fields, and Super-symmetry, Part I: Lattice Field Theories". Int. J. Theor. Phys. 20 (7): 503–517. Bibcode:1981IJTP...20..503E. doi:10.1007/BF00669437. S2CID 120108219.
  • Peskin, M and Schroeder, D. (1995). An Introduction to Quantum Field Theory, Westview Press. (See pages 35–63.)
  • Srednicki, Mark (2007). Quantum Field Theory, Cambridge University Press, ISBN 978-0-521-86449-7.
  • Weinberg, Steven (1995). The Quantum Theory of Fields, (3 volumes) Cambridge University Press.