गंभीर प्रतिपादक

From Vigyanwiki

महत्वपूर्ण घातांक निरंतर चरण संक्रमण के पास भौतिक मात्रा के व्यवहार का वर्णन करते हैं। यह माना जाता है, हालांकि सिद्ध नहीं हुआ है, कि वे सार्वभौमिक हैं, अर्थात वे भौतिक प्रणाली के विवरण पर निर्भर नहीं हैं, बल्कि केवल इसकी कुछ सामान्य विशेषताओं पर निर्भर हैं। उदाहरण के लिए, फेरोमैग्नेटिक सिस्टम के लिए, क्रिटिकल एक्सपोर्टर केवल इस पर निर्भर करते हैं:

महत्वपूर्ण घातांक के ये गुण प्रयोगात्मक डेटा द्वारा समर्थित हैं। विश्लेषणात्मक परिणाम उच्च आयामों में माध्य क्षेत्र सिद्धांत में सैद्धांतिक रूप से प्राप्त किए जा सकते हैं या जब सटीक समाधान ज्ञात होते हैं जैसे द्वि-आयामी आइसिंग मॉडल। सामान्य आयामों में सैद्धांतिक उपचार के लिए पुनर्सामान्यीकरण समूह दृष्टिकोण या अनुरूप बूटस्ट्रैप तकनीकों की आवश्यकता होती है। चरण संक्रमण और महत्वपूर्ण घातांक कई भौतिक प्रणालियों में दिखाई देते हैं जैसे कि क्रिटिकल_पॉइंट_ (थर्मोडायनामिक्स) में पानी, चुंबकीय प्रणालियों में, सुपरकंडक्टिविटी में, परकोलेशन में और अशांत तरल पदार्थों में। महत्वपूर्ण आयाम जिसके ऊपर माध्य क्षेत्र के घातांक वैध हैं, सिस्टम के साथ भिन्न होते हैं और अनंत भी हो सकते हैं।

परिभाषा

चरण संक्रमण को चलाने वाला नियंत्रण पैरामीटर अक्सर तापमान होता है लेकिन दबाव या बाहरी चुंबकीय क्षेत्र जैसे अन्य मैक्रोस्कोपिक चर भी हो सकते हैं। सरलता के लिए, निम्नलिखित चर्चा तापमान के संदर्भ में काम करती है; दूसरे नियंत्रण पैरामीटर में अनुवाद सीधा है। जिस तापमान पर संक्रमण होता है उसे महत्वपूर्ण तापमान कहा जाता है Tc. हम भौतिक मात्रा के व्यवहार का वर्णन करना चाहते हैं f महत्वपूर्ण तापमान के आसपास शक्ति कानून के संदर्भ में; हम कम तापमान का परिचय देते हैं

जो चरण संक्रमण पर शून्य है, और महत्वपूर्ण घातांक को परिभाषित करता है :

इसका परिणाम उस शक्ति कानून में है जिसकी हम तलाश कर रहे थे:

यह याद रखना महत्वपूर्ण है कि यह फ़ंक्शन के स्पर्शोन्मुख व्यवहार का प्रतिनिधित्व करता है f(τ) जैसा τ → 0.

अधिक आम तौर पर कोई उम्मीद कर सकता है


सबसे महत्वपूर्ण क्रिटिकल एक्सपोनेंट

आइए हम मान लें कि सिस्टम के दो अलग-अलग चरण हैं जो आदेश पैरामीटर द्वारा वर्णित हैं Ψ, जो ऊपर और ऊपर गायब हो जाता है Tc.

अव्यवस्थित चरण पर विचार करें (τ > 0), क्रमित चरण (τ < 0) और महत्वपूर्ण तापमान (τ = 0) अलग-अलग चरण। मानक सम्मेलन के बाद, आदेशित चरण से संबंधित महत्वपूर्ण घातांक प्राइम किए गए हैं। अव्यवस्थित (आदेशित) स्थिति के लिए सुपरस्क्रिप्ट/सबस्क्रिप्ट + (-) का उपयोग करने के लिए यह अन्य मानक सम्मेलन भी है। आदेशित चरण में सामान्य रूप से सहज समरूपता टूटना होता है।

Definitions
Ψ order parameter (e.g. ρρc/ρc for the liquid–gas critical point, magnetization for the Curie point, etc.)
τ TTc/Tc
f specific free energy
C specific heat; T2f/T2
J source field (e.g. PPc/Pc where P is the pressure and Pc the critical pressure for the liquid-gas critical point, reduced chemical potential, the magnetic field H for the Curie point)
χ the susceptibility, compressibility, etc.; ψ/J
ξ correlation length
d the number of spatial dimensions
ψ(x) ψ(y)⟩ the correlation function
r spatial distance

निम्नलिखित प्रविष्टियों का मूल्यांकन किया जाता है J = 0 (के लिए छोड़कर δ प्रवेश)

महत्वपूर्ण घातांक विशिष्ट मुक्त ऊर्जा से प्राप्त किए जा सकते हैं f(J,T) स्रोत और तापमान के समारोह के रूप में। सहसंबंध की लंबाई कार्यात्मक (गणित) से प्राप्त की जा सकती है F[J;T].

ये संबंध द्वि- और त्रि-आयामी प्रणालियों में महत्वपूर्ण बिंदु के करीब सटीक हैं। हालांकि, चार आयामों में, शक्ति कानूनों को लॉगरिदमिक कारकों द्वारा संशोधित किया जाता है। ये मनमाने ढंग से करीब आयामों में प्रकट नहीं होते हैं, लेकिन ठीक चार नहीं होते हैं, जिनका उपयोग आयामी नियमितीकरण के रूप में किया जा सकता है।[1]


ईज़िंग-जैसी प्रणालियों के मीन फील्ड क्रिटिकल एक्सपोर्टर

एक अदिश क्षेत्र (जिनमें से ईज़िंग मॉडल प्रोटोटाइपिकल उदाहरण है) के लिए महत्वपूर्ण घातांक के शास्त्रीय लैंडौ सिद्धांत (मीन फील्ड थ्योरी के रूप में भी जाना जाता है) द्वारा दिए गए हैं

यदि हम डेरिवेटिव शब्दों को जोड़ते हैं तो इसे गिन्ज़बर्ग-लैंडौ सिद्धांत के माध्य क्षेत्र में बदल देते हैं, हमें मिलता है

महत्वपूर्ण घटनाओं के अध्ययन में प्रमुख खोजों में से यह है कि महत्वपूर्ण बिंदुओं का औसत क्षेत्र सिद्धांत केवल तभी सही होता है जब सिस्टम का अंतरिक्ष आयाम निश्चित आयाम से अधिक होता है जिसे महत्वपूर्ण आयाम कहा जाता है # क्षेत्र सिद्धांत में ऊपरी महत्वपूर्ण आयाम जो भौतिक को बाहर करता है ज्यादातर मामलों में आयाम 1, 2 या 3। औसत क्षेत्र सिद्धांत के साथ समस्या यह है कि महत्वपूर्ण घातांक अंतरिक्ष आयाम पर निर्भर नहीं करते हैं। यह महत्वपूर्ण आयामों के नीचे मात्रात्मक विसंगति की ओर जाता है, जहां वास्तविक महत्वपूर्ण घातांक माध्य क्षेत्र मानों से भिन्न होते हैं। यह कम अंतरिक्ष आयाम पर गुणात्मक विसंगति भी पैदा कर सकता है, जहां वास्तव में महत्वपूर्ण बिंदु मौजूद नहीं हो सकता है, भले ही औसत क्षेत्र सिद्धांत अभी भी भविष्यवाणी करता है कि है। यह ईज़िंग मॉडल के लिए आयाम 1 का मामला है जहाँ कोई चरण संक्रमण नहीं है। अंतरिक्ष आयाम जहां माध्य क्षेत्र सिद्धांत गुणात्मक रूप से गलत हो जाता है, उसे निम्न महत्वपूर्ण आयाम कहा जाता है।

प्रायोगिक मूल्य

का सबसे सटीक मापा गया मान α superfluid हीलियम (तथाकथित लैम्ब्डा संक्रमण) के चरण संक्रमण के लिए -0.0127(3) है। नमूने में दबाव के अंतर को कम करने के लिए मान को अंतरिक्ष यान पर मापा गया था।[2] यह मान सबसे सटीक सैद्धांतिक निर्धारणों के साथ महत्वपूर्ण असहमति में है[3][4][5] उच्च तापमान विस्तार तकनीकों, मोंटे कार्लो विधि विधियों और अनुरूप बूटस्ट्रैप से आ रहा है।[6]

Unsolved problem in physics:

Explain the discrepancy between the experimental and theoretical determinations of the heat capacity critical exponent α for the superfluid transition in Helium-4.[6]

सैद्धांतिक भविष्यवाणियां

जाली मॉडल के मोंटे कार्लो सिमुलेशन के माध्यम से महत्वपूर्ण घातांक का मूल्यांकन किया जा सकता है। इस प्रथम सिद्धांत पद्धति की सटीकता उपलब्ध कम्प्यूटेशनल संसाधनों पर निर्भर करती है, जो अनंत मात्रा सीमा तक जाने और सांख्यिकीय त्रुटियों को कम करने की क्षमता निर्धारित करती है। अन्य तकनीकें महत्वपूर्ण उतार-चढ़ाव की सैद्धांतिक समझ पर निर्भर करती हैं। सबसे व्यापक रूप से लागू होने वाली तकनीक पुनर्सामान्यीकरण समूह है। अनुरूप बूटस्ट्रैप हाल ही में विकसित तकनीक है, जिसने ईज़िंग क्रिटिकल एक्सपोनेंट्स के लिए नायाब सटीकता हासिल की है।

स्केलिंग कार्य

महत्वपूर्ण स्केलिंग के प्रकाश में, हम आयाम रहित मात्राओं के संदर्भ में सभी थर्मोडायनामिक मात्राओं को पुनः व्यक्त कर सकते हैं। महत्वपूर्ण बिंदु के काफी करीब, कम मात्रा की शक्तियों के कुछ अनुपातों के संदर्भ में सब कुछ फिर से व्यक्त किया जा सकता है। ये स्केलिंग कार्य हैं।

स्केलिंग फ़ंक्शंस की उत्पत्ति को रीनॉर्मलाइज़ेशन ग्रुप से देखा जा सकता है। महत्वपूर्ण बिंदु इन्फ्रारेड निश्चित बिंदु है। महत्वपूर्ण बिंदु के पर्याप्त रूप से छोटे पड़ोस में, हम पुनर्सामान्यीकरण समूह की कार्रवाई को रेखीयकृत कर सकते हैं। इसका मूल रूप से मतलब है कि सिस्टम को कारक द्वारा पुनर्विक्रय करना a पुनर्विक्रय ऑपरेटरों और स्रोत क्षेत्रों के बराबर होगा aΔ कुछ के लिए Δ. इसलिए, हम स्केल की गई स्वतंत्र मात्राओं के संदर्भ में सभी मात्राओं का पुनर्मूल्यांकन कर सकते हैं।

स्केलिंग संबंध

लंबे समय से यह माना जाता था कि क्रांतिक घातांक क्रांतिक तापमान के ऊपर और नीचे समान थे, उदा. αα या γγ. अब यह दिखाया गया है कि यह आवश्यक रूप से सत्य नहीं है: जब सतत समरूपता स्पष्ट रूप से असतत समरूपता के लिए अप्रासंगिक (पुनः सामान्यीकरण समूह अर्थ में) अनिसोट्रॉपी द्वारा टूट जाती है, तो प्रतिपादक γ और γ समान नहीं हैं।[7] महत्वपूर्ण घातांक ग्रीक अक्षरों द्वारा दर्शाए जाते हैं। वे सार्वभौमिकता वर्गों में आते हैं और स्केलिंग संबंध और हाइपरस्केलिंग संबंधों का पालन करते हैं

इन समीकरणों का अर्थ है कि केवल दो स्वतंत्र घातांक हैं, उदाहरण के लिए, ν और η. यह सब पुनर्सामान्यीकरण समूह के सिद्धांत से होता है।

टपकन थ्योरी

चरण संक्रमण और महत्वपूर्ण घातांक भी रिसाव प्रक्रियाओं में दिखाई देते हैं जहां कब्जे वाली साइटों की एकाग्रता या जाली के लिंक चरण संक्रमण के नियंत्रण पैरामीटर हैं (भौतिकी में शास्त्रीय चरण संक्रमण में तापमान की तुलना में)। सबसे सरल उदाहरणों में से दो आयामी वर्ग जाली में बर्नोली परकोलेशन है। साइटों को बेतरतीब ढंग से संभाव्यता के साथ कब्जा कर लिया गया है . क्लस्टर को निकटतम पड़ोसी कब्जे वाली साइटों के संग्रह के रूप में परिभाषित किया गया है। के छोटे मूल्यों के लिए कब्जे वाले स्थल केवल छोटे स्थानीय समूह बनाते हैं। परकोलेशन दहलीज पर (जिसे महत्वपूर्ण संभाव्यता भी कहा जाता है) फैला हुआ क्लस्टर बनता है जो सिस्टम के विपरीत साइटों तक फैला होता है, और हमारे पास दूसरे क्रम का चरण संक्रमण होता है जो सार्वभौमिक महत्वपूर्ण घातांक की विशेषता है।[8][9] अंतःस्रवण के लिए सार्वभौमिकता वर्ग ईज़िंग सार्वभौमिकता वर्ग से भिन्न है। उदाहरण के लिए, सहसंबंध लंबाई महत्वपूर्ण घातांक है की तुलना में 2डी बर्नौली परकोलेशन के लिए 2डी आइसिंग मॉडल के लिए। अधिक विस्तृत अवलोकन के लिए, परकोलेशन क्रिटिकल एक्सपोर्टर देखें।

अनिसोट्रॉपी

कुछ एनिस्ट्रोपिक प्रणालियाँ हैं जहाँ सहसंबंध की लंबाई दिशा पर निर्भर है।

निर्देशित रिसाव को अनिसोट्रोपिक अंतःस्राव भी माना जा सकता है। इस मामले में महत्वपूर्ण घातांक अलग हैं और ऊपरी महत्वपूर्ण आयाम 5 है।[10]


बहुविश्लेषणात्मक बिंदु ्स

बहु-महत्वपूर्ण बिंदुओं पर, सीमा पर या महत्वपूर्ण मैनिफोल्ड के चौराहों पर अधिक जटिल व्यवहार हो सकता है। तापमान और दबाव जैसे दो या दो से अधिक मापदंडों के मान को ट्यून करके उन तक पहुँचा जा सकता है।

स्थिर बनाम गतिशील गुण

उपरोक्त उदाहरण विशेष रूप से महत्वपूर्ण प्रणाली के स्थिर गुणों को संदर्भित करते हैं। हालाँकि सिस्टम के गतिशील गुण भी महत्वपूर्ण हो सकते हैं। विशेष रूप से, विशेषता समय, τchar, सिस्टम के रूप में विचलन करता है τcharξ z, गतिशील एक्सपोनेंट के साथ z. इसके अलावा, समान स्थैतिक महत्वपूर्ण घातांक वाले समतुल्य मॉडल के बड़े स्थैतिक सार्वभौमिकता वर्ग छोटे गतिशील सार्वभौमिकता वर्गों में विघटित हो जाते हैं, यदि कोई मांग करता है कि गतिशील घातांक भी समान हैं।

महत्वपूर्ण घातांक की गणना अनुरूप क्षेत्र सिद्धांत से की जा सकती है।

विषम स्केलिंग आयाम भी देखें।

स्व-संगठित आलोचना

विघटनकारी प्रणालियों के लिए स्व-संगठित आलोचनात्मकता के लिए महत्वपूर्ण प्रतिपादक भी मौजूद हैं।

यह भी देखें

बाहरी लिंक और साहित्य

  • हेगन क्लेनर्ट और वेरेना शुल्ते-फ्रोहलिंडे, φ के महत्वपूर्ण गुण4-सिद्धांत, विश्व वैज्ञानिक (सिंगापुर, 2001); किताबचा ISBN 981-02-4658-7
  • टोडा, एम., कुबो, आर., एन. सैटो, स्टैटिस्टिकल फिजिक्स I, स्प्रिंगर-वेरलाग (बर्लिन, 1983); हार्डकवर ISBN 3-540-11460-2
  • जे.एम. योमन्स, चरण संक्रमण के सांख्यिकीय यांत्रिकी, ऑक्सफोर्ड क्लेरेंडन प्रेस
  • एच. यूजीन स्टेनली|एच. ई। स्टेनली इंट्रोडक्शन टू फेज ट्रांजिशन एंड क्रिटिकल फेनोमेना, ऑक्सफोर्ड यूनिवर्सिटी प्रेस, 1971
  • Universality classes Sklogwiki से
  • जिन्न-जस्टिन, जीन (2002)। क्वांटम क्षेत्र सिद्धांत और महत्वपूर्ण घटनाएं, ऑक्सफोर्ड, क्लेरेंडन प्रेस (2002), ISBN 0-19-850923-5
  • जिन्न-जस्टिन, जे. (2010). क्रिटिकल फेनोमेना: फील्ड थ्योरेटिकल अप्रोच स्कॉलरपीडिया आर्टिकल स्कॉलरपीडिया, 5(5):8346।
  • डी. पोलैंड, एस. रिचकोव, ए. विची, द कंफर्मल बूटस्ट्रैप: थ्योरी, न्यूमेरिकल टेक्निक्स, एंड एप्लीकेशन, Rev.Mod। भौतिक। 91 (2019) 015002, http://arxiv.org/abs/1805.04405
  • एफ. लियोनार्ड और बी. डेलामोटे क्रिटिकल एक्सपोनेंट संक्रमण के दोनों पक्षों पर भिन्न हो सकते हैं: सामान्य तंत्र https://arxiv.org/abs/1508.07852

संदर्भ

  1. 't Hooft, G.; Veltman, M. (1972). "गेज फील्ड्स का नियमितीकरण और नवीनीकरण" (PDF). Nucl. Phys. B. 44 (1): 189–213. Bibcode:1972NuPhB..44..189T. doi:10.1016/0550-3213(72)90279-9. hdl:1874/4845.
  2. Lipa, J. A.; Nissen, J.; Stricker, D.; Swanson, D.; Chui, T. (2003). "लैम्ब्डा बिंदु के बहुत निकट शून्य गुरुत्व में तरल हीलियम की विशिष्ट ऊष्मा". Physical Review B. 68 (17): 174518. arXiv:cond-mat/0310163. Bibcode:2003PhRvB..68q4518L. doi:10.1103/PhysRevB.68.174518. S2CID 55646571.
  3. Campostrini, Massimo; Hasenbusch, Martin; Pelissetto, Andrea; Vicari, Ettore (2006-10-06). "Theoretical estimates of the critical exponents of the superfluid transition in $^{4}\mathrm{He}$ by lattice methods". Physical Review B. 74 (14): 144506. arXiv:cond-mat/0605083. doi:10.1103/PhysRevB.74.144506. S2CID 118924734.
  4. Hasenbusch, Martin (2019-12-26). "तीन आयामों में एक बेहतर घड़ी मॉडल का मोंटे कार्लो अध्ययन". Physical Review B. 100 (22): 224517. arXiv:1910.05916. Bibcode:2019PhRvB.100v4517H. doi:10.1103/PhysRevB.100.224517. ISSN 2469-9950. S2CID 204509042.
  5. Chester, Shai M.; Landry, Walter; Liu, Junyu; Poland, David; Simmons-Duffin, David; Su, Ning; Vichi, Alessandro (2020). "Carving out OPE space and precise $O(2)$ model critical exponents". Journal of High Energy Physics. 2020 (6): 142. arXiv:1912.03324. Bibcode:2020JHEP...06..142C. doi:10.1007/JHEP06(2020)142. S2CID 208910721.
  6. 6.0 6.1 Slava Rychkov (2020-01-31). "Conformal bootstrap and the λ-point specific heat experimental anomaly". Journal Club for Condensed Matter Physics (in English). doi:10.36471/JCCM_January_2020_02.
  7. Leonard, F.; Delamotte, B. (2015). "एक संक्रमण के दोनों पक्षों में महत्वपूर्ण घातांक भिन्न हो सकते हैं". Phys. Rev. Lett. 115 (20): 200601. arXiv:1508.07852. Bibcode:2015PhRvL.115t0601L. doi:10.1103/PhysRevLett.115.200601. PMID 26613426. S2CID 22181730.
  8. Stauffer, Dietrich; Aharony, Amnon (1994). "परकोलेशन थ्योरी का परिचय". Publ. Math. 6: 290–297. ISBN 978-0-7484-0253-3.
  9. Jacobsen, Jesper Lykke (2015-11-13). "Critical points of Potts and O( N ) models from eigenvalue identities in periodic Temperley–Lieb algebras". Journal of Physics A: Mathematical and Theoretical. 48 (45): 454003. arXiv:1507.03027. Bibcode:2015JPhA...48S4003L. doi:10.1088/1751-8113/48/45/454003. ISSN 1751-8113. S2CID 119146630.
  10. Kinzel, W. (1982). Deutscher, G. (ed.). "निर्देशित परकोलेशन". Percolation and Processes.