गणितीय आकृतिविज्ञान

From Vigyanwiki
एक आकार (नीले रंग में) और इसके रूपात्मक फैलाव (हरे रंग में) और कटाव (पीले रंग में) हीरे के आकार के संरचनात्मक तत्व द्वारा।

गणितीय आकृति विज्ञान (एमएम) समुच्चय सिद्धान्त, जाली सिद्धांत, सांस्थिति विज्ञान और यादृच्छिक कार्यों के आधार पर ज्यामिति संरचनाओं के विश्लेषण और प्रसंस्करण के लिए एक सिद्धांत और तकनीक है। एमएम आमतौर पर अंकीय प्रतिबिंबबो पर लागू होता है, लेकिन इसे ग्राफ, सतह जाल, ठोस और कई अन्य स्थानिक संरचनाओं पर भी नियोजित किया जा सकता है।

सांस्थिति विज्ञान घन ज्यामिति कॉन्टिनम (थ्योरी) -स्पेस कॉन्सेप्ट्स जैसे आकार, आकार, उत्तल सेट, संयुक्तता और जियोडेसिक दूरी, एमएम द्वारा निरंतर और असतत दोनों स्थानों पर पेश किए गए थे। MM मोर्फोलॉजिकल मूर्ति प्रोद्योगिकी की नींव भी है, जिसमें ऑपरेटरों का एक सेट होता है जो उपरोक्त विशेषताओं के अनुसार छवियों को रूपांतरित करता है।

मूल रूपात्मक संचालक अपरदन (आकृति विज्ञान), फैलाव (आकृति विज्ञान), उद्घाटन (आकृति विज्ञान) और समापन (आकृति विज्ञान) हैं।

एमएम मूल रूप से द्विआधारी छवियों के लिए विकसित किया गया था, और बाद में इसे ग्रेस्केल फ़ंक्शन (गणित) और छवियों तक बढ़ा दिया गया था। जाली को पूरा करने के बाद के सामान्यीकरण को आज एमएम की सैद्धांतिक नींव के रूप में व्यापक रूप से स्वीकार किया जाता है।

इतिहास

1964 में इकोले डेस माइन्स डे पेरिस, फ्रांस में जॉर्जेस माथेरॉन और जॉन सेरा के सहयोगात्मक कार्य द्वारा गणितीय आकृति विज्ञान का विकास किया गया था। माथेरॉन ने सेरा की पीएचडी थीसिस का पर्यवेक्षण किया, जो पतली क्रॉस सेक्शन (ज्यामिति) से खनिज विशेषताओं की मात्रा का ठहराव के लिए समर्पित है, और इस काम के परिणामस्वरूप एक उपन्यास व्यावहारिक दृष्टिकोण, साथ ही अभिन्न ज्यामिति और सांस्थिति विज्ञान में सैद्धांतिक प्रगति हुई।

1968 में, माथेरॉन और सेरा के नेतृत्व में फॉनटेनब्लियू, फ्रांस में इकोले डेस माइन्स डे पेरिस द्वारा सेंटर डी मॉर्फोलोजी मैथेमेटिक की स्थापना की गई थी।

शेष 1960 के दशक और अधिकांश 1970 के दशक के दौरान, MM अनिवार्य रूप से बाइनरी छवियों के साथ निपटा, जिसे सेट (गणित) के रूप में माना गया, और बड़ी संख्या में बाइनरी ऑपरेटरों और तकनीकों को उत्पन्न किया: हिट-या-मिस ट्रांसफ़ॉर्म, डिलेशन (आकृति विज्ञान), कटाव (मॉर्फोलॉजी), ओपनिंग (मॉर्फोलॉजी), क्लोजिंग (मॉर्फोलॉजी), ग्रैनुलोमेट्री (आकृति विज्ञान) , हिट-या-मिस ट्रांसफॉर्म #थिनिंग, टोपोलॉजिकल कंकाल, परम क्षरण , सशर्त द्विभाजक, और अन्य। उपन्यास छवि मॉडल के आधार पर एक यादृच्छिक दृष्टिकोण भी विकसित किया गया था। उस अवधि का अधिकांश कार्य फॉनटेनब्लियू में विकसित किया गया था।

1970 के दशक के मध्य से 1980 के दशक के मध्य तक, MM को ग्रेस्केल कार्यों और छवियों के लिए भी सामान्यीकृत किया गया था। कार्यों के लिए मुख्य अवधारणाओं (जैसे फैलाव, कटाव, आदि) को विस्तारित करने के अलावा, इस सामान्यीकरण ने नए ऑपरेटरों को जन्म दिया, जैसे रूपात्मक ढाल, शीर्ष-टोपी परिवर्तन और वाटरशेड (एल्गोरिदम) (एमएम का मुख्य विभाजन (इमेज प्रोसेसिंग) दृष्टिकोण)।

1980 और 1990 के दशक में, MM को एक व्यापक पहचान मिली, क्योंकि कई देशों के अनुसंधान केंद्रों ने इस पद्धति को अपनाना और उसकी जांच करना शुरू किया। एमएम को बड़ी संख्या में इमेजिंग समस्याओं और अनुप्रयोगों पर लागू किया जाना शुरू हुआ, विशेष रूप से शोर छवियों के गैर-रैखिक फ़िल्टरिंग के क्षेत्र में।

1986 में, सेरा ने MM को और सामान्यीकृत किया, इस बार पूर्ण जाली पर आधारित एक सैद्धांतिक ढांचे के लिए। इस सामान्यीकरण ने सिद्धांत में लचीलापन लाया, इसके अनुप्रयोग को बहुत बड़ी संख्या में संरचनाओं में सक्षम किया, जिसमें रंगीन चित्र, वीडियो, ग्राफ (असतत गणित), मेष (गणित) आदि शामिल हैं। उसी समय, माथेरॉन और सेरा ने भी एक सूत्र तैयार किया। नए जाली ढांचे के आधार पर रूपात्मक फ़िल्टर (गणित) के लिए सिद्धांत।

1990 और 2000 के दशक में कनेक्शन (आकृति विज्ञान) और लेवलिंग (आकृति विज्ञान) की अवधारणाओं सहित आगे की सैद्धांतिक प्रगति भी देखी गई।

1993 में, गणितीय आकृति विज्ञान (ISMM) पर पहला अंतर्राष्ट्रीय संगोष्ठी बार्सिलोना, स्पेन में हुई। तब से, आईएसएमएम प्रत्येक 2-3 वर्षों में आयोजित किए जाते हैं: फॉनटेनब्लियू, फ्रांस (1994); अटलांटा, संयुक्त राज्य अमेरिका (1996); एम्स्टर्डम, नीदरलैंड्स (1998); ऊंचा पोल , कैलिफोर्निया, संयुक्त राज्य अमेरिका (2000); सिडनी, ऑस्ट्रेलिया (2002); पेरिस, फ्रांस (2005); रियो डी जनेरियो, ब्राज़िल (2007); ग्रोनिंगन (शहर), नीदरलैंड्स (2009); इंट्रा (वर्बानिया), इटली (2011); अपसला, स्वीडन (2013); रिक्जेविक, आइसलैंड (2015); और फॉनटेनब्लियू, फ्रांस (2017)।

संदर्भ


बाइनरी आकारिकी

द्विआधारी आकृति विज्ञान में, एक छवि को यूक्लिडियन अंतरिक्ष के सबसेट के रूप में देखा जाता है या पूर्णांक ग्रिड , किसी आयाम के लिए d.

संरचना तत्व

बाइनरी आकारिकी में मूल विचार एक छवि को एक सरल, पूर्व-परिभाषित आकार के साथ जांचना है, यह निष्कर्ष निकालना है कि यह आकार छवि में कैसे फिट बैठता है या आकार को याद करता है। इस सरल जांच को संरचनात्मक तत्व कहा जाता है, और यह स्वयं एक द्विआधारी छवि है (यानी, अंतरिक्ष या ग्रिड का सबसेट)।

यहां व्यापक रूप से उपयोग किए जाने वाले संरचनात्मक तत्वों के कुछ उदाहरण दिए गए हैं (बी द्वारा चिह्नित):

  • होने देना ; B त्रिज्या r की एक खुली डिस्क है, जो मूल पर केंद्रित है।
  • होने देना ; B एक 3 × 3 वर्ग है, यानी, B = {(-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 0), ( 0, 1), (1, −1), (1, 0), (1, 1)}।
  • होने देना ; B, B = {(−1, 0), (0, -1), (0, 0), (0, 1), (1, 0)} द्वारा दिया गया क्रॉस है।

बेसिक ऑपरेटर

मूल संचालन शिफ्ट-इनवेरिएंट (अनुवाद संबंधी व्युत्क्रम) ऑपरेटर हैं जो मिन्कोव्स्की जोड़ से दृढ़ता से संबंधित हैं।

ई को यूक्लिडियन स्पेस या पूर्णांक ग्रिड होने दें, और ए में ई में एक बाइनरी छवि हो।

क्षरण

एक डिस्क द्वारा गहरे-नीले वर्ग का क्षरण, जिसके परिणामस्वरूप हल्का-नीला वर्ग बनता है।

संरचना तत्व बी द्वारा बाइनरी छवि ए के क्षरण (आकृति विज्ञान) द्वारा परिभाषित किया गया है

जहां बीz सदिश z द्वारा B का अनुवाद है, अर्थात, , .

जब संरचनात्मक तत्व बी का एक केंद्र होता है (उदाहरण के लिए, बी एक डिस्क या वर्ग है), और यह केंद्र ई की उत्पत्ति पर स्थित है, तो ए द्वारा बी के क्षरण को बिंदुओं के लोकस (गणित) के रूप में समझा जा सकता है। बी के केंद्र द्वारा जब बी ए के अंदर चलता है। उदाहरण के लिए, त्रिज्या 2 की एक डिस्क द्वारा मूल पर केंद्रित 10 पक्ष के वर्ग का क्षरण, मूल पर केंद्रित पक्ष 6 का एक वर्ग है। मूल।

ए द्वारा बी का क्षरण भी अभिव्यक्ति द्वारा दिया जाता है .

उदाहरण आवेदन: मान लें कि हमें एक डार्क फोटोकॉपी का फैक्स प्राप्त हुआ है। सब कुछ ऐसा लगता है जैसे खून बह रहा कलम से लिखा गया हो। कटाव प्रक्रिया मोटी रेखाओं को पतला होने देगी और ओ अक्षर के अंदर छेद का पता लगाएगी।

फैलाव

एक डिस्क द्वारा गहरे-नीले वर्ग का फैलाव, जिसके परिणामस्वरूप गोलाकार कोनों वाला हल्का-नीला वर्ग बनता है।

संरचनात्मक तत्व बी द्वारा ए के फैलाव (आकृति विज्ञान) द्वारा परिभाषित किया गया है

फैलाव कम्यूटेटिव है, इसके द्वारा भी दिया गया है .

यदि पहले की तरह मूल बिंदु पर B का केंद्र है, तो A द्वारा B के फैलाव को B द्वारा कवर किए गए बिंदुओं के स्थान के रूप में समझा जा सकता है, जब B का केंद्र A के अंदर चला जाता है। उपरोक्त उदाहरण में, वर्ग का फैलाव त्रिज्या 2 की डिस्क द्वारा 10 भुजा का वर्ग 14 भुजा का एक वर्ग है, गोल कोनों के साथ, मूल पर केंद्रित है। गोल कोनों की त्रिज्या 2 है।

तनुकरण द्वारा भी प्राप्त किया जा सकता है , जहां बीs B की घूर्णी समरूपता को दर्शाता है, अर्थात, .

उदाहरण अनुप्रयोग: फैलाव अपरदन की दोहरी क्रिया है। जो आकृतियाँ बहुत हल्के ढंग से खींची जाती हैं वे फैल जाने पर मोटी हो जाती हैं। इसका वर्णन करने का सबसे आसान तरीका यह कल्पना करना है कि उसी फैक्स/टेक्स्ट को मोटे पेन से लिखा गया है।

खोलना

एक डिस्क द्वारा गहरे-नीले वर्ग का खुलना, जिसके परिणामस्वरूप गोल कोनों वाला हल्का-नीला वर्ग बनता है।

A द्वारा B का उद्घाटन (आकृति विज्ञान) A द्वारा B के क्षरण द्वारा प्राप्त किया जाता है, जिसके परिणामस्वरूप B द्वारा परिणामी छवि का फैलाव होता है:

उद्घाटन भी द्वारा दिया गया है , जिसका अर्थ है कि यह छवि A के अंदर संरचनात्मक तत्व B के अनुवाद का स्थान है। 10 भुजा के वर्ग के मामले में, और त्रिज्या 2 की एक डिस्क संरचना तत्व के रूप में, उद्घाटन 10 भुजा का एक वर्ग है गोल कोने, जहाँ कोने की त्रिज्या 2 है।

उदाहरण अनुप्रयोग: मान लें कि किसी ने एक गैर-भिगोने वाले कागज पर एक नोट लिखा है और यह लेखन ऐसा दिखता है जैसे कि यह छोटे बालों वाली जड़ों को बढ़ा रहा हो। अनिवार्य रूप से खोलना बाहरी छोटे हेयरलाइन लीक को हटा देता है और पाठ को पुनर्स्थापित करता है। साइड इफेक्ट यह है कि यह चीजों को गोल कर देता है। तीखे किनारे गायब होने लगते हैं।

समापन

एक डिस्क द्वारा गहरे-नीले आकार (दो वर्गों का संघ) का समापन, जिसके परिणामस्वरूप गहरे-नीले आकार और हल्के-नीले क्षेत्रों का मिलन होता है।

B द्वारा A का समापन (आकृति विज्ञान) A द्वारा B के फैलाव द्वारा प्राप्त किया जाता है, इसके बाद B द्वारा परिणामी संरचना का क्षरण होता है:

द्वारा समापन भी प्राप्त किया जा सकता है , जहां एक्सc E के सापेक्ष X के पूरक (सेट सिद्धांत) को दर्शाता है (अर्थात, ). उपरोक्त का अर्थ है कि समापन छवि ए के बाहर संरचनात्मक तत्व के सममित के अनुवाद के लोकस का पूरक है।

मूल ऑपरेटरों के गुण

यहाँ बुनियादी द्विआधारी रूपात्मक संचालकों (विस्तार, कटाव, उद्घाटन और समापन) के कुछ गुण हैं:

  • वे ट्रांसलेशनल इनवेरियंस हैं।
  • वे बढ़ रहे हैं, यानी अगर , तब , और , वगैरह।
  • फैलाव क्रमविनिमेय है: .
  • यदि ई की उत्पत्ति संरचनात्मक तत्व बी से संबंधित है, तो .
  • फैलाव साहचर्य है, अर्थात, . इसके अलावा, कटाव संतुष्ट करता है .
  • कटाव और फैलाव द्वैत को संतुष्ट करते हैं .
  • खोलना और बंद करना द्वैत को संतुष्ट करता है .
  • तनुकरण सेट संघ पर वितरणात्मक गुण है
  • कटाव सेट चौराहे पर वितरण संपत्ति है
  • विस्फारण अपरदन का छद्म-प्रतिलोम है, और इसके विपरीत, निम्नलिखित अर्थों में: अगर और केवल अगर .
  • उद्घाटन और समापन निष्काम हैं।
  • ओपनिंग विरोधी व्यापक है, यानी, , जबकि समापन व्यापक है, अर्थात, .

अन्य ऑपरेटर और उपकरण

ग्रेस्केल आकृति विज्ञान

कार्डियक इमेज के ग्रेडिएंट का वाटरशेड

ग्रेस्केल आकारिकी में, छवियां फंक्शन (गणित) हैं जो यूक्लिडियन स्पेस या ग्रिड ई को मैप करती हैं , कहाँ वास्तविक संख्याओं का समुच्चय है, किसी भी वास्तविक संख्या से बड़ा तत्व है, और किसी भी वास्तविक संख्या से छोटा तत्व है।

ग्रेस्केल स्ट्रक्चरिंग तत्व भी उसी प्रारूप के कार्य हैं, जिन्हें स्ट्रक्चरिंग फ़ंक्शन कहा जाता है।

एक इमेज को f(x) द्वारा स्ट्रक्चरिंग फंक्शन को b(x) द्वारा और g को B द्वारा समर्थित करने पर, f द्वारा b द्वारा ग्रेस्केल फैलाव दिया जाता है

जहां sup सर्वोच्चता को दर्शाता है।

इसी तरह, f द्वारा b का क्षरण किसके द्वारा दिया जाता है

जहां infinfumum को दर्शाता है।

बाइनरी मॉर्फोलॉजी की तरह ही ओपनिंग और क्लोजिंग क्रमशः किसके द्वारा दी जाती है


फ्लैट संरचना कार्य

रूपात्मक अनुप्रयोगों में समतल संरचना वाले तत्वों का उपयोग करना आम है। समतल संरचना वाले फलन b(x) के रूप में फलन हैं

कहाँ .

इस मामले में, फैलाव और क्षरण को बहुत सरल किया जाता है, और क्रमशः द्वारा दिया जाता है

बाउंडेड, डिस्क्रीट केस में (ई एक ग्रिड है और बी बाउंडेड है), सुप्रीमम और इनफिमम ऑपरेटरों को अधिकतम और न्यूनतम द्वारा प्रतिस्थापित किया जा सकता है। इस प्रकार, फैलाव और कटाव ऑर्डर सांख्यिकी फिल्टर के विशेष मामले हैं, जिसमें फैलाव एक चलती हुई खिड़की के भीतर अधिकतम मूल्य लौटाता है (स्ट्रक्चरिंग फ़ंक्शन सपोर्ट बी का सममित), और चलती खिड़की बी के भीतर न्यूनतम मूल्य वापस करने वाला कटाव।

फ्लैट संरचना वाले तत्व के मामले में, रूपात्मक ऑपरेटर केवल पिक्सेल मानों के सापेक्ष क्रम पर निर्भर करते हैं, उनके संख्यात्मक मानों की परवाह किए बिना, और इसलिए विशेष रूप से बाइनरी छवियों और ग्रेस्केल छवियों के प्रसंस्करण के लिए उपयुक्त होते हैं जिनके प्रकाश हस्तांतरण फ़ंक्शन ज्ञात नहीं होते हैं।

अन्य ऑपरेटर और उपकरण

  • रूपात्मक प्रवणता
  • टॉप-हैट ट्रांसफॉर्म
  • वाटरशेड (एल्गोरिदम)

इन ऑपरेटरों के संयोजन से कई इमेज प्रोसेसिंग कार्यों के लिए एल्गोरिदम प्राप्त किया जा सकता है, जैसे सुविधा निकालना , छवि विभाजन , अनशार्प मास्किंग, फ़िल्टर (सिग्नल प्रोसेसिंग), और सांख्यिकीय वर्गीकरण। इस रेखा के साथ-साथ सतत आकृति विज्ञान पर भी ध्यान देना चाहिए[1]


पूर्ण जाली पर गणितीय आकारिकी

पूर्ण जाली आंशिक रूप से आदेशित सेट हैं, जहां प्रत्येक उपसमुच्चय में एक कम और एक उच्चतम है। विशेष रूप से, इसमें कम से कम तत्व और सबसे बड़ा तत्व होता है (जिसे ब्रह्मांड भी कहा जाता है)।

संयोजन (विस्तार और कटाव)

होने देना एक पूर्ण जाली बनो, जिसमें निम्नतम और उच्चतम का प्रतीक है और , क्रमश। इसके ब्रह्मांड और सबसे कम तत्व को यू और द्वारा दर्शाया गया है , क्रमश। इसके अलावा, चलो एल से तत्वों का एक संग्रह बनें।

एक फैलाव कोई ऑपरेटर है जो सर्वोच्च पर वितरित करता है, और कम से कम तत्व को संरक्षित करता है। अर्थात।:

  • ,
  • .

एक क्षरण कोई ऑपरेटर है जो इन्फिनमम पर वितरित करता है, और ब्रह्मांड को संरक्षित करता है। अर्थात।:

  • ,
  • .

तनुकरण और कटाव गाल्वा कनेक्शन बनाते हैं। यानी हर फैलाव के लिए एक और केवल एक क्षरण है जो संतुष्ट करता है

सभी के लिए .

इसी प्रकार, प्रत्येक अपरदन के लिए उपरोक्त संबंध को संतुष्ट करने वाला एक और केवल एक फैलाव होता है।

इसके अलावा, यदि दो ऑपरेटर कनेक्शन को संतुष्ट करते हैं, तब एक फैलाव होना चाहिए, और एक कटाव।

उपरोक्त कनेक्शन को संतुष्ट करने वाले कटाव और फैलाव के जोड़े को संयोजन कहा जाता है, और कटाव को फैलाव का आसन्न क्षरण कहा जाता है, और इसके विपरीत।

खोलना और बंद करना

हर जोड़ के लिए , रूपात्मक उद्घाटन और रूपात्मक समापन निम्नानुसार परिभाषित किया गया है:

रूपात्मक उद्घाटन और समापन बीजगणितीय उद्घाटन (या बस खोलना) और बीजगणितीय समापन (या बस समापन) के विशेष मामले हैं। बीजगणितीय उद्घाटन एल में ऑपरेटर हैं जो निष्क्रिय, बढ़ते और विरोधी व्यापक हैं। बीजगणितीय क्लोजिंग एल में ऑपरेटर हैं जो निष्क्रिय, बढ़ते और व्यापक हैं।

विशेष मामले

बाइनरी आकृति विज्ञान जाली आकारिकी का एक विशेष मामला है, जहां एल ई (यूक्लिडियन स्पेस या ग्रिड) का सत्ता स्थापित है, यानी एल ई के सभी सबसेट का सेट है, और सेट समावेशन है। इस मामले में, इन्फिमम सेट चौराहा है, और सुप्रीम सेट यूनियन है।

इसी तरह, ग्रेस्केल आकारिकी एक और विशेष मामला है, जहां L, E को मैप करने वाले फ़ंक्शन का सेट है , और , , और , क्रमशः बिंदुवार क्रम, सर्वोच्च और न्यूनतम हैं। अर्थात्, f और g, L में फलन हैं, तब अगर और केवल अगर ; सबसे कम द्वारा दिया गया है ; और सर्वोच्च द्वारा दिया गया है .

यह भी देखें

टिप्पणियाँ

  1. G. Sapiro, R. Kimmel, D. Shaked, B. Kimia, and A. M. Bruckstein. Implementing continuous-scale morphology via curve evolution. Pattern Recognition, 26(9):1363–1372, 1993.


संदर्भ

  • Image Analysis and Mathematical Morphology by Jean Serra, ISBN 0-12-637240-3 (1982)
  • Image Analysis and Mathematical Morphology, Volume 2: Theoretical Advances by Jean Serra, ISBN 0-12-637241-1 (1988)
  • An Introduction to Morphological Image Processing by Edward R. Dougherty, ISBN 0-8194-0845-X (1992)
  • Morphological Image Analysis; Principles and Applications by Pierre Soille, ISBN 3-540-65671-5 (1999), 2nd edition (2003)
  • Mathematical Morphology and its Application to Signal Processing, J. Serra and Ph. Salembier (Eds.), proceedings of the 1st International workshop on mathematical morphology and its applications to signal processing (ISMM'93), ISBN 84-7653-271-7 (1993)
  • Mathematical Morphology and Its Applications to Image Processing, J. Serra and P. Soille (Eds.), proceedings of the 2nd international symposium on mathematical morphology (ISMM'94), ISBN 0-7923-3093-5 (1994)
  • Mathematical Morphology and its Applications to Image and Signal Processing, Henk J.A.M. Heijmans and Jos B.T.M. Roerdink (Eds.), proceedings of the 4th international symposium on mathematical morphology (ISMM'98), ISBN 0-7923-5133-9 (1998)
  • Mathematical Morphology: 40 Years On, Christian Ronse, Laurent Najman, and Etienne Decencière (Eds.), ISBN 1-4020-3442-3 (2005)
  • Mathematical Morphology and its Applications to Signal and Image Processing, Gerald J.F. Banon, Junior Barrera, Ulisses M. Braga-Neto (Eds.), proceedings of the 8th international symposium on mathematical morphology (ISMM'07), ISBN 978-85-17-00032-4 (2007)
  • Mathematical morphology: from theory to applications, Laurent Najman and Hugues Talbot (Eds). ISTE-Wiley. ISBN 978-1-84821-215-2. (520 pp.) June 2010


बाहरी संबंध